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1 Research Overview

The research vehiele for this contract is the fargest possible computer that could be conceived for the mid
to late 1990°s. The technical challenges of such a machine serve as our guiding stimulus for the research
carried out and reported here

We unagine this machine to occupy a l4-story building, to cost upward of $1 billion, and to be so
colossal that the nation could only afford one or two of them. The available chip technology and nachine
size are consistent with 10'> FLOPS and 10*® bytes of memory. The machine will be used to solve
large-scale scientific problems having both military and civilian applications.

his investigation addresses the hardware technology, software techniques. algorithms. communica-

tions. processing elements, and applications. The study will determine the plausibility (not feasibility) of
the machine. Progress in these various areas are highlighted in the forthcoming sections.

2 Circuits

Sandy Wells and Tom Knight have designed and tested MSI prototypes of a new class of analog computing
devices. based on switched capacitor constraint boxes. The core of these devices is a two-port consisting
of a capacitor rapidly switched between the ports. Labelling the terminal voltages a.b.c.d. this attempts
to enforce a constraint a — b = ¢ — d. This is a reciprocal constraint, allowing propagation of information
in either direction. We have shown that. using this basic constraint box. we can solve linear systems (to
arhitrars accdracy usaig mined tnatog ligital techniques), solve over-constrained systems with the pseudo-
inverse, and solve linear programming problems. The small size. simplicity. and -~ase of understanding.
argue that this device may be an important circuit element in next-generation hybrid computing.

Srinivas Devadas and his students have been focusing on the optimization ot combinational and sequen-
tial circuits specified at the register-transfer or logic levels with area, using performance and testability of
the synthesized circuit as design parameters. Work is also being done in the area of test generation for
VLSI circuits.

Techniques have been proposed in the past for various types of finite state machine (FSM) decomposi-
tion that use the number of states or edges in the decomposed circuits as the cost function to be optimized.
These measurcs are not reflective of the true logic complexity of the decompusad ciceuits. These methods
have been mainly heuristic in nature and offer limited guarantees as to the quality of the decomposition.
In this work [32]. following up on our ~xact state assignment algorithm developed earlier {31]. we have
developed optimum and heuristic algorithms for the general decomposition of FSMs such that the sum
total of the number of product terms in the one-hot coded and logic minimized submachines is minimum
or mirumal. This cost function is much more reflective of the area of an optimally state-assigned and
minimized submachine than the number of states/edges in the submachine.

We are continuing to investigate the impact of logic synthesis on the testability of sequential circuits
that can be modeled as finite state machines [33] [34] [37] [30]. The new approach of [34] and [37] is
(o use synthesis to ensure the complete testability of a sequential circuit by ensuring that each invalid
state has an uuperturbable distinguishing sequence. To accomplish this we have developed a Boolean
minimization procedure of prime implicant generation and constrained covering based on the Quine-
MecCluskey algorithm that ensures that no single fault can both produce an invalid state and corrupt the
Histinguishing sequence by which that invalid state can be identified. On completion. it guarantees a prime
and irredundant. fully testable Moore or Mealy finite state machine. Given a two-lcvel circuit with these
properties we then definc constrained algebraic factorization techniques that retain the invariant that no
single fault can both produce an invalid state and corrupt the distinguishing sequence by which that invalid
state 1s detected. We have used the notion of fault-effect disjointness to explore the landscape between
various synthesis approaches and have demonc*=atnd a spertram ofmethnds 137] that place relatively morc-
or-less emphasis on either logic optimization or constrained synthesis. Techniques used in this exploration
include include fault simulation, Boolean covering, algebraic factorization and state assignment.

We have explored the relationships between redundant logic and don’t care conditions in sequential
circuits [30]. Stuck-at faults in a sequential circuit may be testable in the combinational sense, but may
be redundant because they do not alter the terminal behavior of a non-scan sequential machine. These
sequential redundaicies result in a faulty State Transition Graph (STG) that is equivalent to the STG of




the true machine. We have precisely classified redundant faults in sequential circuits composed of single
or interacting finite state machines. For each of the different classes of redundancies. we define don’t care
<etx wineh if optimally exploited will result in the implicit elimination of any such redundancies in a given
cirent

Wee hinve also addressed the problem of generating test sequences for stuck-at faults in non-scan syn-
~hronous sequential circults [38]. A novel test procedure that exploits both the structure of the combina-
tisnal logic in the circnit as well as the sequential behavior of the circuit has been developed. In contrast
to previous approaches, we decompose the problem of sequential test generation into three subproblems
of combinational test generation, fault-free state justification and fault-free state differentiation. Initially,
pTIor to test generation. separate sum-of-product representations of the complete or partial ON-sets and
OFF-sets of cacht of the flip-flop inputs and primary outputs of the sequential circuit, are extracted using
the PODEM algorithm, Fast algorithms for state justification and state differentiation can be based on
this representation. These algorithms perform repeated cube intersections in an effort to find a justification
sequence for a state or a distinguishing sequence for a pair of states.

viVe have addressed the problem of generating tests for delay faults in non-scan syncironous sequential
circnits (38]. Delay test generation for sequential circuits is a considerably more difficult problem than
delay testing of combinational circuits and has received much less attention. We have developed a method
for generating test sequences to detect delay faults in sequential circuits using a stuck-at fault sequential
test generator. [he method is complete in that it will generate a delay test sequence for a targeted fault
given sufficient CPLU time. if such a sequence exists. We term faults for which no delay test sequence exists,
under pur test methodology, sequentially delay redundant. We have also developed means of eliminating
sequential delay redundancies in logic circuits.

Finally. we have done some preliminary work in an attempt to gain insight into the nature of NP-
cemplete problems. In {35]. we have transformed various NP-complete problems in layout. namely two and
multi-layer dogleg channel routing, two-way partitioning, one-dimensional and two-dimensional piacement
ito Boolean satisfiability problems. The transformations are efficient in that the number of inputs to the
Boolean function for which we have to find a satisfying assignment, grows only linearly or quasi-linearly
with the layout problem size. We have applied sophisticated test generation and logic verification strategies
that can be used to check for Boelean function suiisfiability 1o these layout problems. It appears that this
approach to layout optimization offers an elegant means of representing and searching the entire space of
feasible solutions in an attempt to optimize a complex cost function with associated constraints.

3 Processing Elements

The processors of a multicomputer require the ability to switch tasks rapidly to hide transmission latency
without sacrificing single-thread performance. Peter Nuth and Bill Dally are working on an architecture
for a named state processor that achieves this goal by explicitly binding names to all processor registers
and interleaving tasks on a microcycle basis. This mechanism combines the advantages of multi-threading
and multiple register sets for implementing fast context switches and procedure calls. It also provides a
general synchronization mechanism.

During the past year. we have defined the named state processor architecture and its interface to a
multicomputer network. We are currently studying instruction scheduling policies (deciding which pro-
cesses instructions get advanced when) and context cache management policies (deciding which processes
state remains in active storage). A simulator for the processor is under construction. This work is being
performed by Peter Nuth as his MIT Ph.D. thesis.

Most multicomputers are specialized to execute a single model of computation (e.g., dataflow. actors
or shared memory). Scott Wills and Bill Dally have identified a set of primitive mechanisms for com-
munication, synchronization and naining that are required for all of these models of computation. We
are currentiy ~vzjuating these mechanisms in terms of their implementation cost and their suicability for
supporting popular models of paralicl compntation [51] [55].

During the reporting period, we have defined a parailel machiuc interface that incorporates a consistent
set of these mechanisms. A parallel interface simulator. PiSIM, has been constructed to faciiitate exper
iments with the interface. Using PiSIM, dataflow and shared memory models of computation have been
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implemented on the paraliel machine interface. We are presently evaluating the cost and performance of
these implementations.

Anant Agarwal has investigated the use of rapid-context swicching VLSI RISC processors as the com-
prting nodes tn a large parallel machine. Rapid context switching allows overlapping communication and
svichranmization delays with computation by quickly scheduiing a new proccss on the processor. The de-
sign of such a processor 1s complete. The processor, APRIL. switches between threads on either memory
accesses 1o remote nodes, or during an unsuccessful access of a synchronization object. APRIL has tag
support for Futures, and svnchronization support in the form of full-empty bits associated with each mem-
ory word. APRIT also has several basic instructions to allow experimentation with a variety of shared
memory programiing models. These speciai operations include cache flushes. fences. block transfers.
and user definable choice of spin-waiting versus blocking. An instruction-level simulator for APRIL has
been written. A Mul-T compiler for this processor has been written and generates code that runs on the
simmulator. A scheduler that exploits the multithreaded nature of the processor and other run-time system
software has also been written and runs on the simulator. An implementation design consisting of very
nunor modifications to the SPARC processor is almost complete. Because floating point operations are
usually supported through the use of coprocessors in most modern day VLSI RISC microprocessors, we are
investigating methods of multithreading a coprocessor. A performance evaluation of the system effects of
multithreaded processors has also been completed [39]. The analytical evaluation considered the context
switching overhead. and the increased cache and network contention. We showed that for mest system
configurations. while providing for network. cache and overhead effects. between two and fou- contexts
were sufficient to provide close to 90effects.

We are designing a scalahle cache and memory system. A detailed protocol design for a scalable cache
coherence scheme is complete and has been implemented in a simulator. A cache controller design is in
progress. A VLSI implementation of the same is envisaged in the near future. The architectural and
VLSI circuit design of a fast and low-storage-overhead translation scheme for processor addresses is in
progress. Simulations of various cache coherence schemes such as limited directories. singly and doubly
linked lists and write-through shared. are in progress. Our simulations use traces from numeric FORTRAN
codes. graph algorithms written in Mul-T, and CAD applications written in C. (Our FORTRAN tr- ~s
were obtained through = joint effort with IBM T. J. Watson Research Center. The Mul-T traces were
obtained through a compiler-aided tracing package we wrote called T-Mul-1. We have made these traces
available to other researchers also. The CAD traces are from Stanford). Initial results indicate that
the performance of singly linked lists is comparable to doubly linked lists without the extra hardware
overhead and complexity. Limited directories are shown to perform comparably if software support for
widely-shared read-only objects and synchronization structures is provid:d. We wrote a novel post-mortem
scheduler that can take a single-processor execution of a parallel program and. simulating the effect of
varions synchronization implementations such as adaptive backoff [5] o software barrier trees. produce
cache statisties for the various synchronization implementations [39].

4 Communications Topology and Routing Algorithms

Bill Dally and his students are experimenting with a new flow control strategy based virtual channels.
Our inital results show that this strategy can boost network throughput to 90% capacity without adaptive
routing by decoupling resource constraints. Current flow control methods are limited to 30% to 30%
capacity because many chaunels remain idle due to resoutce allocation coupling. This throughput limit is
not due to load imbalance, which can only be addressed by adaptive routing.

The virtual channel flovs control method divides a channel’s flit buffers into many shallow *lanes’. rather
than a single deep FIFO. The buffering is short and wide rather than long and fat. The organization
decouples flit buffer resource allocation for each channel This zllows active meesages to pass blocked
tmessages that are waiting on an unrelated resource much in the way that a two lane street permits cars
travelling straight ahead to pass a car that is waiting to make a left turn.

We have built a simulator of direct and indirect networks that use virtual channel flow control and
have measured their performance under different loads and traffic patterns. The initial results suggest that
a moderai. aumiber of virtual channels (4-8) gives a throughput that is very close to network capacity.




The remaining degradation is largely due to load imbalance and adaptive routing will be required to reach
100 capacity.

Express cubes are k-ary n-cube interconnection networks augmented by erpress channels that provide
a short path for non-local messages. An esxpress cube combines the logarithmic diameter of an indirect
network with the wire-efficiency and ability to exploit locality of a direct network. The insertion of express
channels reduces the network diameter and thus the distance component of network latency. Wire length is
increased allowing networks to operate with latencies that approach the physical speed-of-light limitation
rather than being limited by node delays. Express channels increase wire bisection in a manner that
allows the bisection to be controlled independent of the chaice of radix. dimension. and channel width
By increasing wire bisection to saturate the available wiring media, throughzat can be substantially
increased. With an express cube both latency and throughput are wire-limited and within a small factor
of the physical [imit on performance. Express channels may be inserted into existing interconnection
networks using interchanges. No changes to the local communication controllers are required.

Tom Knight and his students are continuing implementation work on the Transit communicatio.
switch. We have released to manufacturing the design for the button board connector. and for the PC
board comiponent carrier. The carrier cooiing technology has evolved somewhat since our last report
as a result of detailed heat flow calculations. Qur current approach involves flowing coolant through a
microchannel heatsink bonded directly to the rear surface of the die, similar to the approach used by
Tuckerman at Stanford. but at a more macroscopic level.

Die design continues. with the gate-level description and stable test-patterns. and with initial sizing
and layout work under way. Initial RSIM estimates by Henry Minsky of timing (now at 17ns) indicate
that substantial additional effort will be required to achieve our target of a 10ns clock rate. but we remain
cautiously optimistic.

Reccut design changes in the chip specification. adding a per-input-port “swallow™ signal. allow the
use of this design in combination with some as-yet missing packaging technology to construct much larger
switching arrays based on Leiserson's fat-tree topology. Andre DeHon is actively pursuing the topological.
packaging. and electrical requirements of this expansion.

Alex Ishil is incorporating recent shifts from voltage control of the pad output impedance to a scheme
utilizing digitally controlled D/A networks for implmenting the controlled impedance pullup and pulldown
devices.

We have located commercial suppliers for closed loop Fluorinert cooling systems. and plan to purchase
this component when it appears to be the pacing item in the design. High efficiency low voltage power
supplies remain a difficult issue. but interim low-efficiency designs will allow us to test the remainder of
the system. while determining more efficient systems.

Network design for large-scale machines was investigated by Anant Agarwal and his students. We
showed that when switch delay was included in the analysis of direct interconnection networks. the cptimal
network implemented in two physical dimensions in terms of the latency, was three dimensional. This is in
contrast to previous findings that showed that a two dimensional network was optimal. The chief reason
for the difference i1s that node delays can make the wire delays have a relatively smaller impact on overall
latency. A detailed performance model for circuit-switched interconnection networks was developed {60].
Simulators for circuit-switched and packet-switched indirect networks are operational, and we now also
have a packet-switched direct network simulator.

@

5 Systems Software

Andrew Chien and Bill Dally are developing data abstraction tools that support the development of pro-
grams for large scale multicomputers. A language. concurrent aggregates. has been defined that facilitates
the specification of aggregates of cooperating objects. Concurrent aggregates permit the relationships
hetween objects to be defined textually rather than requiring that the objects connect up a pointer struc-
ture at run-time as is typically done. Common structures (e.g., combining trees) can be defined once and
reused as required. The language also permits nesting of object aggregates and specialization of objects
within the aggregate. This work 1s beiug performed by Andrew Chien for his MIT Ph.D. thesis.

During the reporting period, the concurrent aggregates (CA) language has been defined. A compiler
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that translates CA programs to C++ has been written. The outpur of this compiler is linked with a
vun-time written in C4++ that simulates parallel machine execution. A number of programs have been
written in CA to evaluate the language. A study of the efficiency of the language and its implementation
i> vurrer 1y underway.

Bill Dally and Lucien Van Elsen have developed a technique. micro-optimization. for reducing the
operation count and time required to perforru numerical calculations. [he merhod invslves {irst breaking
floating point operations into their constituent integer micro-operations. then optimizing and scheduling
the resulting integer code. The method has been tested using a prototype expression compiler [54]. We
are now looking at extending the method to permit a compiler to perform automatic scaling of numbers.
Where it is possible, this optimization would convert floating point expressions into integer expressions.

John Keen and Bill Dally have been investigating several problems invoived in constructing highly
concurrent database svstems on concurrent computers augmented by large disk arrays. The goal is to
develop systems technology that will permit database systems based on concurrent computers to handle
10° transactions per second. To date we have concentrated on parallel algorithms for logging, recovery. and
ronsistency control. Tne paraliei logging and recovery algorithms make use of parallel logs that represent
a partial order of actions and the use of log processors to compress the logs on a regular basis. We are
invesiigating consitency control algorithms that use reservations to achieve a higher degree of concurrency
than is possible using locks.

Anant Agarwal has continued explorations of methods of programming a large-scale parallel computer
such as the ARC. These investigations take two forms. First, we are looking at methods of partitioning
and scheduling parallel programs to minimize communications. Numerical algorithms that can exploit
locality are being investigated. Tradeoffs in the use of block techniques for linear algebraic codes are being
studied. We currently have several parallel address traces cf several runs of parallel blocking methods
and we are studying their impact on cache and network performance. Scheduling methods that exploit
both locality and the communication latency hiding, provided by a rapid context-switching processor.
are being investigated. Our experimental scheduler runs on our simulation system. Our second thrust is
towards enhancing our parallel programming language to allow (1) the convenient specification of data
parallelism using structures similar to the dataflow [-structures, and (2) allow experimentation with data
placement and relocation. function and data shipping, and different programining models including weaker
shared memory models with block iransfer capabilities. Our current status is that the language primitives
have been defined as extensions to Mul-T and their implementation in the compiler and simulator are in
progress. The APRIL compiler and linker and the lazy future kernel have been implemented. Extensions
for garbage collection and efficient floating-point support are being developed. The T language has also
been sorted to the Sparc and the Decstation (Pmax).

To gaiu more experience with programming large-scale parallel machines we are also writing several
parallel applications. Our major effort has been spent on Speech. This application comprises the viterbi
search portion of a connected speech recognition system being implemented by the Speech and Spoken
Language Systems Giroup at MIT. We have also written particle-in-cell in Mul-T. Several other parallel
applications that we have written include logic simulation, and permute. The Simple application is also
partially written in Mul-T.

Several performance evaluation tools and methods have been developed. Qur T-Mul-T multiprocessor
address tracer is operational. We developed a technique for trace compaction that exploits the spatial
locality of memory referencing in multiprocessors [61]. A novel model for multithreaded processors has
also been derived. A processor locality-based multiprocessor cache interference model has been developed

System studies putting all the above pieces together are also in progress. A detailed multiprocessor
simulator has been implemented and is functional. The simulator is comprised of the APRIL processor
simulator. the cache and memory system, and the interconnection network. Parallel applications written
in Mul-T are compiled to APRIL code and can be executed on the multiprocessor simulator. We have
successfully run our large speech application on 16 processors. each with a multithreaded degree of four. If
needed the FORTRAN post-mortem scheduler or T-Mul-T tracer can replace the APRIL processor front
end.




6 Algorithms

[n the area of algorithms. thiee students—Ron Greenberg, Bruce Maggs. and Cindy Phillips—finished
their Ph.D. theses under the direction of Charles Leiserscn.

Ronald Greenberg has completed his Ph.D. thesis entitled “Efficient [nterconnection Schemes for VLSI
and Parallel Computation.” The thesis is primarily concerned with the design of efficient interconnec-
tion networks for general-puprpose parallel computers and the more spccialized problem of multilayer
channel routing for VLSI chips. In addition. it provides lower bounds on the area required for VLSI
implementations of finite-state machines.

The first part of Greenberg's thesis shows why networks based on Leiserson's fat-tree architecture are
nearly as good as any network built in a comparable amount of physical space. Such networks can simulate
any other network of the same area with slowdown which is a small polylogarithmic function of the area.
These “universal” networks can be constructed in area linear in the number of processors. so that there is
no need to restrict the density of processors in competing networks. Also it 1s possible to compare networks
that are of different size or are built from processors of different sizes (as determined by the amount of
attached memory). In addition, many of the results given do not require the usual assumption of unit
wire delay. Also. it is possible to simulate competing networks even if the processors are not globally
svnchronized into separate phases of internal computation and interprocessor communication. Finally. the
results apply not only in twe dimensions. but also in three dimensions by way of a simple demonstration
of general results on graph layout in three dimensions. This part of the thesis includes joint work with
Charles Leiserson of MIT.

The second part of Greenberg’s thesis discusses the channel routing problem in the context that mauy
lavers of interconnect are available. [t describes a system. MulCh, for multilayer channel routing, which
extends the Chanieleon system developed at U. C. Berkeley. Like Chameleon, Mu!Ch divides a multilayer
problem 1nto essentially independent subproblems of at most three lavers, but unlike Chameleon, MulCh
considers the possibility of using partitions comprised of a single layer instead of only partitions of two or
three layers. Experimental results show that MulCh often performs better than Chameleon in terms of
channel width. total net length. and number of vias. In addition to a description of MulCh as implemented,
Greenberg's thesis discusses improved algorithms for subtasks performed by MulCh, thereby indicating
potential improvements in the speed and performance of multilayer channel routing. In particular. linear
time suffices to determine the minimum width required for a single-layer channel routing problem, and
the density of a collection of nets can be maintained in logarithmic time per net insertion. The work on
MulCh is joint with Alex Ishil of MIT and Alberto Sangiovanni-Vincentelli of U. C. Berkeley: the work
on single-layer channel routing is joint with Miller Maley of Princetow U.

The last part of Greenberg's thesis shows that straightforward techniques for implementing finite-state
machines are optimal in the worst case. Specifically, for any s and k., there is a deterministic finite-state
machine with s states and k symbols such that any layout algorithm requires Q{kslgs) area to lay ou* its
realization. For nondeterministic machines, there is an analogous lower bound of Q(ks?) area. This work
is joint with Mike Foster of Columbia University.

Bruce Maggs also finished his dissertation, entitled Locality in Parallel Computation. The thesis ex-
plores strategies for exploiting locality in three major areas of parallel computation: packet routing, parallel
algorithm design, and w.ecwork emulations.

The first part of Maggs's thesis deals with a novel network-independent approach to the packet-routing
problem. The strategy is to partition the problem into two stages: a path-selection stage and a scheduling
stage. In the first stage paths are found for the packets with small congestion, ¢. and dilation, d. Once the
paths are fixed. both are lower bounds on the time required to deliver the packets. In the second stage we
find a schedule for the movement of each packet along its path so that no two packets traverse the same
odge at the same time: consequently. the total time and maximum queue size required to route all of the
packets to their destinations are minimized.

Although path-selection strategies vary from network to network, Maggs shows that there is an efficient
on-hne scheduling algorithm for the entire class of layered networks. When applied to an N-packet problem.
the algonthm produces a schedule of tength O(e + d + log M), with high probability. The algorithm has
many applications to routing and sorting. Among them are the first on-line algorithms for routing V-
packets on an V-node shuffle-exchange graph in O(log V) steps using constant-size queues and for routing
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kMF¥ packets on a k-dimensional array with side length M in O(k\M) steps using constant-size queues.
The scheduling algorithm can also be used as a subroutine in sorting algorithms. [t vields the first
asymptotically optimal algorithms for sorting on butterfly, shuffle-exchange. and multidimensional array
networks using constant-size queues. The algorithm can also be applied to the constriction of area-
nniversal networks: V-node networks with VLSI-layout area O(.V) that can simulate all other networks
with area O(\N) with only O(log V) slowdown. Maggs also proves the existence of a schedule of length
Ofc + d) for any set of nackets whose paths have congestion ¢ and dilation d (in any network) that uses
constant-size auen-.. Unfortunately, no efficient algorithm for constructing the schedule is known.

[lie secoud part of Maggs's thesis introduces a model for parallel computation. called the distributed
random-access machine (DRAM), in which the communicaiion requiremer.- of paralle] algorithms can be
evaluated. A DRADM is an abstraction of a parallel computer in which memory accesses are implemented
by routing messages through a communication network. It expliciely models the congestion of messages
across cuts of the network.

Maggs introduces the notion of a conservative algorithm as one whose communication requirements at
each step can be bounded by the congestion of pointers of the input data structure across cuts of a DRAM.
A conservative algorithm is guaranteed not to generate undo congestion in any underlying network. Maggs
presents conservative algorithms for a variety of graph problems. Problems such as computing treewalk
numberings, finding the separator of a tree. and evaluating all subexpressions in an expression tree can
be solved in O(log V') steps for V-node trees by conservative algorithms for an exclusive-read exclusive-
write DRAM. More complex problems include finding a minimum-cost spanning forest. and computing
biccnnected components and constructing an Eulerian cycle require O(log® V) steps. for graphs of size
N For concurrent-read concurrent-write DRAM's. all of these problems can be solved by O(log V') step
conservative algorithms.

The final part of the thesis examines the problem of how efficiently a host network can emulate a guest
network. The goal is to emulate T steps of an Vg-node guest network on an Ny node host network.
An emulation is called work-preserving if the time required by the host, Ty is O(Tg.Ng/Ny) because
then both the guest and host networks perform the same amount of total work (processor-time product).
O(T; V). to within a constant factor. A work-preserving emulation is efficient because it achieves optimal
speedup over a sequential emulation of the guest. An emulation is real-time if Ty = O(T¢). because then
the host emulates the guest wid constant delay.

Although many isolated emulation results have been proved for specific networks in the past. and
measures such as dilation and congestion were known to be important. the field has lacked a model within
which general results and meaningful lower bounds could be proved. Maggs provides such a model. along
with techniques for proving lower bounds based on comparing the locality the networks. Some of the
more interesting and diverse results in this part of the thesis include a proof that a linear array can
emulate a (much larger) butterfly in a work-preserving fashion, but that a butterfly cannot emulate an
expauder (of any size) in a work-preserving fashion: a proof that a mesh can be emulated in real time in
a work-preserving fashion on a butterfly, even though any O(1)-to-1 embedding of the mesh has dilation
Qfing V) and a proof that an V-node butterfly can emulate an .V log.V-node shuffle-exchange graph in a
work-preserving fashion, and vice-versa.

Cynthia Phillips finished her dissertation. entitled Theoretical and Ezrperimental Analyses of Parallel
Combinatorial Algorithms. The thesis investigates parallel algorithms for graph and matrix problems.
Some of the algorithms are known. and some she has developed. She has analyzed them theoretically and
»xperimentally. The thesis is broken into five parts.

The first major contribution of her thesis shows how n-node, e-edge graphs can be contracted in a man-
ner similar to the parallel tree contraction algorithm due to Miller and Reif. She gives an O((n +¢)/lgn)-
processor deterministic algorithm that contracts a graph in O(lg® n) time in the EREW PRAM model.
She also gives an Ol(n/lgn)-processor randomized algorithm that with high probability can contract a
hounded-desree graph in O{lgn + lg"’ %) time, where 5 1s the maximum genus of any connected component
of the graph. (The algorithmn can be made to run in deterministic O(lgnlg” n + 1g°5) time using known
techniques.) This algorithm does not require a priors knowledge of the genus of the graph to be contracted.
The contraction algorithm for bounded-degree graphs can be used directly to solve the problem of region
labeling n vision systems. e, determining the connected components of bounded-degree planar graphs
in Oflg n) time. thus improving the best previous bound of O(lg” n).




The second part describes tour APL-like primitives for manipulating dense matrices and vertors and
desenibe their iimplenientation on the Connection Machiue hypercube muliiprocessor. These primitives
provide a natural way of specifving parallel matrix algorithms independently of machine size or architec-
ture amd can actually enhance efficiency by facilitating automatic load batancing. The implementations
are ~fficient i the frequently oecurring case where there are fewer processors than matnix elements. It
particular. if there are m > plzp matrx elements. where p s the number of processors. then the im-
plementations of some of the primitives are asymptotically optimal for a weak hypercube in that the
processor-time product 1s no more than a eonstant factor higher than the running time of the best serial
algorithm. Furthermeore, the parallel time required is optimal to within a constant factor. Her imple-
mentation of the primitives on the Connection Machine 2 system improved the performance of a simplex
program for linear programming by almost an order of magmtude over a naive implementation. from 55
MHops to 525 Mflops

I'he third portion of her thesis investigates dimension-exckange load balancing which 1s a generalization
of one of the techniques uszed in the hypercube implementation of the vector-matrix primitives. She shows
that when tasks are considered indivisible, after one pass of dimension-exchange load balancing. in the
worst case. some processor will have @(lg n) tasks over the average. She also shows that there is an ininal
distribution of tasks for which this load-balancing strategy requires an average of O(lgn) messages {or
each unit reduction in the global inaximum number of tasks.

The fourth part of Phillips’s thesis reports on preliminary experimental investigations which indi ate
that massively parallel computers like the Connection Machine (CM) appear to be well suited for both
sparse and dense 1mplementations of dual relaxation algorithms for network optimization. (Her parallel
unplementation of a nonlinear network optimization program on the Connection Machine is the fasiest
program to date for its class of probiems.) Implementations of a dense version of a known algorithm
for the assignment problem and parallel versions of known heuristics for the traveling salesman problem
suffered from a “sequential tail” phenomenon. Tail-cutting heuristics with appropriate (case-sensitive)
paramenters improved performance markedly.

The fifth and last contribution in her thesis is the design of a VLSI chip which pseudorandomly permutes
bir-serial messages by sending them through a Benes network whose switches have been pseudorandomly
set. Providing a pseudorandom permuter in a simple, high-throughput chip could improve the performance
of routing algorithms for multiprocessors.

Shiomo Kipnis investigated priority arbitration schemes that employ busses to arbitrate among n
modules in a digital system. [: focused on distributed mechanisms that employ m busses. for lgn <
m < n. and use asynchronous combinational arbitration logic. A widely used distriouted asynchronous
mechanism is the binary arbitration scheme, which with m = ign busses arbitrates in t = lgn units
of time. Shlomo Kipnis presented a new asynchronous scheme

binomial arbitration -- that by using
m = ign + 1 busses reduces the arbitration time to t = %lg n. Extending this result. he presented the
generalized binomaal arbitration scheme that achieves a bus-time tradeoff of the form m = ©(tn'/?) between
the number of arbitration busses m and the arbitration time ¢ (in units of bus-settling delay). for values of
! <t <lgnandlgn < m < n. These schemes are based on a novel analysis of data-dependent delays and
grneralize the two known schemes: linear arbitration, which with m = n busses achieves { = | time. and
hinary arbitration, which with m = lgn busses achieves t = lgn time. Most importantly, these schemes
ran he a 'spted with no changes to existing hardware and protocols: they merely involve selecting a good
~et of priority arbitration codewords. The binomial arbitraticn and the generalized binomial arbitration
schemes are a subject of a patent application.

Bruce Maggs and Tom Leighton have heen studying adaptive fault-tolerant algorithms for packst
routing. They have shown that an V-input multibutterfly can sustain k faults and still route log V' per-
nmtations between some set of N —O(k) inputs and .V —~O(k) outputs in O(log V) time. The multibutterfly
1s even more resilient to randomized faults. For example, with high probability. a specially modified twin
butterfly can tolerate N3/ faulty internal nodes, and still route any log N permutations of N packets in
Ollog V) time. Thus, the multibutterfly is the first bounded-degree network known to be able to sustain
large numbers of faults with only minimal degradation in performance.

In the past year. Tom Cormen has continued to write the texthook Introduction to Algorithms with
Professors Letserson and Rivest. The book will be published in early 1990

Marios Papaefthymiou continued his research on synchronous circuit optimization under the supervision
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nf Prof. Leserson. His work focused on investigating the underlying structure of the retiming operation.
[he result of this effort was a convise closed-semiring description of retiming for unit-delay circuits. This
soampact eseription suggests a promising point of view for looking at retiming. Marios Papaefthymiou
i~ currently teving to destgn efficient algorithms tor optimum retuming, by exploiting the group struciure
that he reveaied

During rthe past s1x months, James K. Park has been collaborating with Alok Aggarwal and Dina
Kravets on a numher of problems relating to totally monotone arrays. Such arrays arise naturally in a
wide variety  f fields, including computational geometry. dynamic programming, and VLSI river routing.
Park’s work with Aggarwal centers on the problem of finding maximum entries in totally monotone arrays
and applications of efficient sequential and paralle] algorithms for this probleni. Park’s work with Kravets
ivestigates the problems of selection and sorting in the context of totally monotone arrays and applications
of effeient algoritnms for these problems.

Alexander Ishin has been generalizing his VLSI timing analysis algorithms. A key concern has been the
need to accurately handle the “undefined™ values that electrical signais must take on when they make a
rransition between valid logic levels. In addition. he has attempted to make the algorithms easily adaptable
to- different assumptions about the circuit being analyzed.

>ref Leighton is continuing his research on networks and algorithms for parallel computation. Recently
e has focussed on the following specific problems: the development of fast packet routing algorithms tor
~ommonty used fixed-connection networks, (he development of algorithms to reconfigure networks such as
the hivpercube around faults, the developraent of dvnamic on-line algorithms for embedding computational
structures such as trees in networks. such as the hypercube. in a way that balances computational load
and that minimizes the induced communication load nn the network, the development of algorithms for
~mulating one kind of network on another in a way that preserves the total amount of work (processors «
time) that is done. and the development of a new network architecture for routing that can tolerate large
numbers of faults without a substantial degradation in performance. The particular advances that have
been made in each of these areas is briefly summ- rized in what follows.

In the area of packet routing. Prof. Leighton and his coauthors have discovered the first store-and-
forward routing algorithm which can route n® packets in 2n — 2 steps on an n x n array with constant
s17¢ queues at each node. The details of these and related results can be found in [16]. They have also
daiscovered new and more efficient routing algorithms for the multibutterfly. These algorithms are the first
that are highly tolerant of worst case faults. Also in the arca of fault-tolerance, Prof. Leighton and his
coauthors hav. shown that a hypercube can tolerate a very large number (a constant fraction) of randomly
foeated faults without incurring more than a constant factor loss in performance. ne matter how large
the hypercube 1 They have also discovered simple algorithms for routing aro:ind faults in the hypercuhe
that are guaranteed to perform nearly as well as the hest routing algorithms when no faults are present.
The details of this work are deseribed in [12].

[n the area of network embeddings and scheduling. Prof. Leighton and his coauthors have discovered
optimal algorithms for embedding Jynamically growing and shrinking trees in a hypercube so that the
processing load on the nodes of the hypercube is balanced, and so that all communication links are lacal.
This work has application to the problem of locally scheduiing the work assigned to the processors of a
hypercube in a dynamic fashion (i.e.. as one computation spawns another. the algoritbm determines the
processor that will handle the new task). They have also discovered cptimal algorithms for mapping code
written for one architecture onto a different architecture in a way that minimizes the total amount of work
required by the similating machine. These results are described in [7.25].

The past year was also a good one for Prof. Leighton's students. Bruce Maggs, Satish Rao. Richard
Koch. and Mark Newman all obtained their Ph.D.s this year. Together with Prof. Leighton. they made
lots of solid progress on packet routing algorithms, fault tolerance in netweorks, and on graph embedding
problems. At this point they are getting close to asymptotically sptimal results that also appear to work
wellin reahity In fact, the highlight of the coming year will be to help design and lay out a ;nuitibutterfly
network for Tomn Knight's new machine. With a hittle luck, theory will be able to play an important
rolein the developmient of a state of the art machine. Prof. Leigh*»n is also working with Bill Dally and
his students to see (f theory can be helpful with the routing protoeols on his new machine, and he has
been talking with Alan Baratz ahout the possibilities of implementing some of the new theory routing
algorithins on the TBM (<F 11 so that it can become a general purpose routing machine.
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Another highlight of the last six months was the new ACM Symposium on Parallel Algorithms and
Architectures rhat Prof. Leighton helped to organtze. The first n.eeting was in Sante Fe in mid-June.
nad the meeting was very successful. Papers ¢! at were presented ranged from theory to practice and the
meeting provided a good forum for interaction between people who think about parallel machines. those
who fanld them. and those who use them.

7 Applications

Over the past six months. efforts in developing numerical algorithins for problems rel~ted to the design
of an ARC. as well as those that can effectively exploit the ARC’s capability. have continued under
the direction of Jacob White. Interesting new algorithms have been unearthed in the areas of paraliel
cireuit simulation and mounte carlo device simulation. In addition. preliminary experiments with recently
developed algorithms in capacitance extraction and classical semiconductor device simulation have heey
completed with very encouraging results.

In the area of circuit =imulation, we have completed the development of SIMLAB [ 69.70]. a fast.
veneral purpose circuit simulation program intended for use in c.r-uit simulation research. The program
i= presently being used for our course in numerical simulation as well as forming the basis for thre
nngning research projects. SIMLAB is being used to study multiple timepoint methods for increasing the
parallelism in cirewit simulation so as to effectively exploit a massively parallel processor on reasonable
sized problems. In addition. SIMLAB is being used to study multigrid variations for efficient simulatiou
.f the analog arravs. like those used in early vision.

SIMLAB has also been used to study the behavior oi the switched linear resistive and nonlinear
resistive networks used for image smoothing and segmentation algorithms (under the supervision of Prof.
J. Wratt). Arc-length style continuation methods were added to SIMLAB so that comparison studies of
several continuation methods can be gracefully iimplemented in analog VLSI.

Also 1 the area of circuit simulation, we have undertaken a study of Exponential-Fitting numerical
mtegration algorithms. We have been able to prove several st ;ong results indicating that the performance of
recently published exponential-fitting algorithms are. in the limit of large timesteps, identical to other well-
known techniques. Detailed experiments indicate exponential-fitting offers little advantage. We have also
exanuned several modifications which seem to improve the accuracy of the exponential-fitting algorithm.
bt it s unhkely to produce results that are competitive with more standard techniques.

In the area of classi- al device simulation. we have completed preliminary experiments using waveform
relnxation to perform transient two-dimensional similation of MOS devices. Experiments demonstrate
thes WR converges in a nmif- rm manner. and that there is typically some multirate behavior in a device
that the WR algonthm can exploit. Speed and accuracy comparisons between standard direct methods.
red/black GGauss-Seidel WR. and red/black overrelaxed WR indicate that for the experiments examined.
ralculated terminal currents match well between the me hods, and that overrelaxed WR was beiween 2 and
5 tines faster than direct methods. A recently impiemerted modification based on a waveform-Newton
algorithi iner -ased this to a factor of from 5 to 11 {9,10].

Our other project in clas:":al device simulation is in developing efficient and robust numerical algo-
rithms for a two-dimensional semiconductor device simulator that includes both momentum and energy
halance equations. Iracking the =lectron energies allow, for a more accurate characterization of both hot
electron effects and substrate currents. The program developed uses a ful' Newton method to compute
potentiais. electron concentrations, and electron tempertures on a grid that describes the device. [ni-
tial straulation results on a MOSFET were close to what was expected theoretically and what had been
prublished in the literature by other esearchers. Because of the reliability of the algoritiims used in this
nrogram. we expect to he able to examine the effects of a wider range of physical models for m~bility and
irmpact jonization.

Stnulation of small geometry devices by particle sunulation or Monte-Carlo techniques is becoming
inereasingly popular. even though the method is computationally much more expensive than numerically
s<olving the standard or maodified drift-diffusion equations. We are presently investigating alternative
numerieal techmgues to see if it is possible to make Monte-Carlo simulation less computational'y expensive
and more parallelizable. In particular. we are investigating the interaction hetween the particle motions




and the changes in the electrie fields.

[hiree dimenstonal capacitance and induetance extraction have recently become important becanse the
donse packing of processors and the memory required for high performance parallel computers requirs
‘e lonenstonal intereonnection. To insure an interconnect design will be capable of achieving desired
cort osrcure coupling capacitance and inductance must be examined. Over the past yvear we developed
voap vtance extraction algorithm for arbitrary geometries of ideal conductors in a umform dielectric.
The alamithim reduees the caleulation complexity from order »2. for the standard algorithm. to order

wiwre no1s the number of tiles the into which conductor surfaces are discretized. The algorithm uses
bination of an iterative technique and a multipole expansion algorithm. The imtial stages in the
cnpbmentation and testing of a fast multipole accelerated conjugate gradient algorithm for extraction of

vecitances from complex three dimensional geometries are complete. and the method provides nearly
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v ber o maamtude speed improvement of the standard approach with as few as eight conductors 3],
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Abstract

Express cubes are k-ary n-cube interconnection networks augmented by ezpress channels that
provide a short path for non-local messages. An express cube combines the logarithmic diameter
of an indirect network with the wire-efficiency and ability to exploit locality of a direct network.
The insertion of express channels reduces the network diameter and thus the distance component
of network latency. Wire length is increased allowineg networks to operate with latencies that
approach the physical speed-of-light limitation rather -..an being limited by node delays. Express
channels increase wire bisection in a manner that allows the bisection to be controlled independent
of the choice of radix, dimension, and channel width. By increasing wire bisection to saturate
the available wiring media, throughput can be substantially increased. With an expres. cube
both latency and throughput are wire-limited and within a small factor of the physical limit
on performance. Express channels may be inserted into existing interconnection networks using
interchanges. No changes to the local communication controllers are required.

1 Introduction

Interconnection networks are used to pass messages containing data and synchronization infor-
mation between the nodes of concurrent computers {1] {2] [16] [17]. The messages may be sent

between the processing nodes of a message-passing multicomputer [1] or between the processors
and memories of a shared-memory multiprocessor [2].

An interconnection network is characterized by its topology, routing, and flow control [10]. The
topology of a network is the arrangement of its nodes and channels into a graph. Routing de-
termines the path chosen by a message in this graph. Flow control deals with the allocation of
channel and buffer resources to a message as it travels along this path. This paper deals only
with topology. Express cubes can be applied independent of routing and flow control strategies.

The performance of a network is measured in terms of its latency and its throughput. The latency
of a message is the elapsed time from when the message send is initiated until the message is

!The research described in this paper was supported in part by the Defease Advanced Research Projects Agency
under contracts N00014-88K-0738 and N00014-87K-0825 and in part by a National Science Foundation Presidential
Young [nvestigator Award with matching fands from General Electric Corporation and IBM Corporation.




completely received. Network latency is the average message latency under specified conditions.
Network throughput is the number of messages the network can deliver per unit time.

Low-dimensional k-ary n-cube networks using wormhole routing have been shown to provide low
latency and high throughput for networks that are wire-limited [4] [5] [9]. For n < 3, the k-ary
n-cube topology is wire-efficient in that it makes efficient use of the available bisection width. This
topology maps into the three physical dimensions in a manner that allows messages to use all of the
available bandwidth along their path without ever having to double back on themselves. Also, low-
dimensional k-ary n-cubes concentrate bandwidth into a few wide channels so that the component
of latency due to message length is reduced. In most contemporary concurrent computers, this is
the dominant component of latency. Because of their low-latency, high throughput, and affinity for
implementation in VLSI, these k-ary n-cube networks with n = 2 or 3 have been used successfully

in the design of several concurrent computers including the Ametek 2010 [17], the J-Machine [7]
(8], and the Mosaic [18].

However, low-dimensional k-ary n-cube interconnection networks have two significant shortcom-
ings:

o Because wires are short, node delays dominate wire delays and the distance related compo-
nent of latency falls more than an order of magnitude short of speed-of-light limitations. In

the J-Machine (7], for example, node delay is 50ns while the longest wire is 225mm and has
a time-of-flight delay of 1.5ns.

o The channel width of these networks s often limited by node pin count rather than by
wire bisection. For example, the J-Machine channel width is limited to 9-bits by pin count
limitations. In the physical node widtk of 50mm, a 6-layer printed circuit board can handle
over four times thie channel width after accounting for through holes and local connections.

In short, many regular k-ary n-cube interconnection networks are node-limited rather than wire-
limited. In these networks, node delay and pin limitations dominate wire delay and wire density

limitations. The ratios of node delay to wire delays and pin density to wire density cannot be
balanced in a regular k-ary n-cube.

Express cubes overcome this problem by allowing wire length and wire density to be adjusted
independently of the choice of radix, k, dimension, n, and channel width, W. An express cube
is a k-ary n-cube augmented by one or more levels of express channels that allow non-local
messages to bypass nodes. The wire length of the express channels can be increased to the
point that wire delays dominate node delays. The number of express channels can be adjusted to
increase throughput until the available wiring media is saturated. This ability to balance node and
wire limitations is achieved without sacrificing the wire-efficiency of k-ary n-cube networks. The
number of channels traversed by a message in a hierarchical express cube grows logarithmically
with distance as in a multistage interconnection network [11]{19]. The express cube, however, is
able to exploit locality while in a multistage network all messages must traverse the diameter of
the network. With an express cube, both latency and throughput are wire limited and are within
a small constant factor of the physical limit on performance.

The remainder of this paper describes the express cube topology and analyzes its performance.




Section 2 summarizes the notation that will be used throughout the paper. Section 3 introduces
the express cube topology in steps. Basic express cubes (Section 3.1) reduce latency to twice the
delay of a dedicated wire for messages traveling long distances. Throughput can be increased to
saturate the available wiring density by adding multiple express channels (Section 3.2). With a
hierarchical express cube (Section 3.3), latency for short distances, while node-limited, is within
a small constant factor of the best that can be achieved by any bounded degree network. Some
design considerations for express cube interchanges are discussed in Section 4.

2 Notation

The following symbols are used in this paper. They are listed here for reference.

C, the set of channels in the network.

D, manhattan distance traveled by a message, |z, — zq4| + |ys — 4| + |2, = 24|, where
the source is at (z,, y,, 2,) and the destination is at (zg4, y4, 24).

H  hops. the number of nodes traversed by a message.

i, number of nodes between interchanges in an express cube.

k, the radix of the network - the length in each dimension.

I, the number of levels of hierarchy in a hierarchical express cube.

L, the message length in bits.

n, the dimension of the network.

N, the set of nodes in the network. Where it is unambiguous, N is also used for the
number of nodes in the network, |N].

, the latency of a aode.

Ty

Tw, the latency of a wire that connects two physically adjacent nodes.
Tp, the pipeline period of a node.

W, the width of a channel in bits.

a, the ratio of node latency to wire latency, T,,/Ty,.

Communication between nodes is performed by sending messages. A message may be broken
into one or more packets for transmission. A packet is the smallest unit that contains routing
and sequencing information. Packets contain one or more flow control digits or flits. A flit is
the smallest unit on which flow control is performed. A flit in turn is composed of one or more
physical transfer units or phits®. A phit is W-bits, the size of the physical communication media.

An interconnect.on rietwork consists of a set of nodes, N, that are connected by a set of channels,
C C N x N. Each channel is unidirectional and carries data from a source node to a destination
node. For the purposes of this paper it is assumed that the network is bidirectional: channels
occur in pairs so that (ny,n3) € C = (n3,n,) € C.

IThere is no constraint that the physical unit of transfer, phit, must be smaller than the flow control unit, flit.
It is possible to construct systems with several flits in each phit.




(A)

Figure 1: Insertion of express channels reduces latency: (A) A regular k-ary l-cube network may

be dominated by node delay, (B) A k-ary l-cube with express channels reduces the node delay
component of latency.

3 Express Cubes

3.1 Express Channels Reduce Latency

Figure 1 illustrates the application of express channels to a k-ary 1-cube or linear array. A regular
k-ary 1-cube is shown in Figure 1A. The network is linear array of k processing nodes, labeled N,
each connected to its nearest neighbors by channels of width W. The delay of a phit propagating
through a node is T,,. The delay of the wire connecting two nodes is T,. Each channel can accept
a new phit every T,. The latency of a message of length L sent distance D is

L L
To= HTa+ DTy + 35 Tp = (Ta + Tu)D + 3T (1)

Message latency is composed of three components as shown in equation (1). The first component
is the node Jatency, due to the number of hops, H. The second component is the wire latency, due
to the distance D. The third component is due to message length, L. For a conventional k-ary
n-cube, # = D and since for most networks T, >> T, the node latency dominates the wire

latency. Express cubes reduce the node latency by increasing wire length to reduce the number
of hops, H.

An express k-ary l-cube is shown in Figure 1B. Express channels have been added to the array
by inserting an interchange, labeled I, every i nodes. An interchange is not a processing node.
It performs only communication functions and is not assigned an address. Each interchange
is connected to its neighboring interchanges by an additional channel of width W, the express
channel. When a message arrives at an interchange it is routed directly to the next interchange if
it is not destined for one of the intervening nodes. To preserve the wire-efficiency of the network,

messages are never routed past their destinations on the express channels ¢ven though doing so
would reduce H in many cases.

The delay, Tn, and throughput, 1/T}, of an interchange are assumed to be identical to those of
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a node. The wire delay of the express channel is assumed to be iT,,. To simplify the following
analysis, it is assumed that interchanges add no physical distance to the network. Assuming i|D,
H = D/i + i and ipsertion of express channels reduces the latency to

D . LT,
T, = (T+1)TH+TWD+WP. (2)

In the general case, an average message traversing D processing nodes travels over A; = (i +1)/2
local channels to reach an interchange, H. = {D/i — 1/2 + 1/(2i)] express channels to reach the
last interchange before the destination, and finally H; = (D - i/2 + 1/2) mod i local channels to
the destination. The total number of hops is H = H; + H. + H/ giving a latency of

i+l (D 1.1 i1 , LT,

For large distances, D >> a = T,/T,, choosing i = a balances the node and wire delay. With
this choice of i, the latency due to distance is approximately twice the wire latency, Tp ~ 27, D.
The latency for large distances of large express channel network with i = a is within a factor of
two of the latency of a dedicated manhattan wire between the source and destination3.

For small distances or large @, the i term in the coefficient of 7, in equation (2) is significant and
node delay dominates. For such networks, latency is minimized by choosing i = v/D resulting in

Tp =~ 2(v/D — 1)T,. The use of hierarchical express channels (Section 3.3) can further improve
the latency for small distances.

3.2 Multiple Express Channels Increase Throughput to Saturate Wire Density

To first order, network throughput is proportional to wire bisection and hence wire density. If more
wires are available to transmit data across the network, throughput will be incréased provided
that routing and flow control strategies are able to profitably schedule traffic onto these wires.
Many regular network topologies, such as low-dimensional k-ary n-cubes, are unable to make use
of all available wire density because of pin limitations. The wire bisection of an express cube can
be controlled independent of the choice of radix, k, dimension, n, or channel width, W by adding

multiple express channels to the network to match network throughput with the available wiring
density.

Figure 2 shows two methods of inserting multiple express channels. Multiple express channels
may be handled by each interchange as shown in Figure 2A. Alternatively, simplex interchanges
can be interleaved as shown in Figure 2B.

In method A, using multipie channel interchanges, an interchange is inserted every i nodes as above
and each interchange is connected to its neighbors using m parallel express channels. Figure 2A
shows a network with { = 4 and m = 2. The interchange acts a8 a concentrator combining

There is nothing special about the factor of two. By choosing § = ja the distance component of latency will
be (1 4 1/3) times the latency of s manhattan wire.
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Figure 2: Multiple express channels allow wire density to be increased to saturate the available
wiring media. Express channels can be added using either (A) interchanges with multiple express
channels, or {B) interleaved simplex interchanges.

messages arriving on the m incoming express channels with non-local messages arriving on the
local channel and concentrating these message streams onto the m outgoing express channels.
This method has the advantage of making better use of the express channels since any message
can route on any express channel. Flexibility in express channel assignment is achieved at the
expense of higher pincount and limited expansion.

With method B, interleaving simplex interchanges, m simplex interchanges are inserted into each
group of t nodes. Each interchange is connected to the corresponding interchange in the next group
by a single express channel. All messages from the nodes immediately before an interchange will be
routed on that interchange’s express channels. Because load cannot be shared among interleaved
express channels, an uneven distribution of traffic may result in some channels being saturated
while parallel channels are idle. Method B has the advantage of using simple interchanges and
allowing arbitrary expansion. In the extreme case of inserting an interchange between every pair

of nodes the resulting topology is almost the same as the topology that would result from doubling
the number of dimensions.

Both of the methods illustrated in Figure 2 have the effect of increasing the wire density (and
bisection) by a factor of m + 1. To first order, network throughput will increase by a similar
amount. There will be some degradation due to uneven loading of parallel channels.

The use of multiple express channels offsets the load imbalance between express and local channels.
If traffic is uniformly distributed, the average fraction of messages crossing a point in the network
on a local channel is P, = 2i/k as compared to P, = (k — 2i)/k crossing on an express channel.
For large networks where k >> i, the bulk of the traffic is on express channels. Increasing the
aumber of express channels applies more of the network bandwidth where it is most needed.

Multiple express channels are an effective method of increasing throughput in networks where the
channel width is limited by pinout constraints. For example, in the J-Machine the chanael width,
W =9, is set by pin limitations*. The printed-circuit board technology is capable of running 80

‘Each J-Machine node is packaged in a 168-pin PGA. The six communication channels each require 9 data bits
and 6 control bits consuming 90 of these pins. Power connections use 48 pins. The remaining 30 pins are used by
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Figure 3: Hierarchical express channels reduce latency due to local routing.

wires in each dimension across the “)mm width 5f a node. Even with many of these wires used
for local connections. four parallel 15-bit (data+control) wide channels can be easily run across
each node. A multiple express channel network with m = 3 could use this availzble wire density
to quadruple the throughput of the network.

3.3 Hierarchical Express Cubes Have Logarithmic Node Delay

With a single level of express channels, an average of i local channels are traversed by each
non-local message. The node delay on these local channels represents a significant component
of latency and causes networks with short distances, D < a?, to be node limited. Hierarchical

express cubes overcome this limitation by using several levels of express channels to make node
delay increase logarithmically with distance for short distances.

The use of hierarchical express channels, shown in Figure 3, reduces the latency due to node
delay on local channels. With hierarchical express channels, there are [ levels of interchanges. A
first-level interchange is inserted every i nodes. A second-level interchange repiaces every it® first
level interchange, every i? nodes. {a general, a j*® level interchange replaces every ith j — 1*¢ level
interchange, every i/ nodes®. Figure 3 illustrates a hierarchical express cube with 1 =2, = 2.

A j*P level interchange has j+ 1 inputs and j+ 1 outputs. Arriving messages are treated identically
regardless of the input on which they arrive. Messages that are destined for one of the next :
nodes a.e routed to the local (0*") output. Those remaining messages that are destined for one
of the next i? nodes are routed to the 1* output. The process continues with all messages with
a destination between i® and **! podes away, 0 < p < j — 1, routed to the p'® outpat. All
remaining messages are routed to the j' output.

A message in a hierarchical express cube is delivered in three phases: ascent, cruise, and descent.
In the ascent phase, an average message travels (i + 1)/2 hops to get to the first interchange,
and (i — 1)/2 hops at each level for a total of H, = (i — 1){/2 + 1 hops and a distance of
Dy = (i = 1)/2. During the cruise phase, a message travels A, = |(D — D,)/i'] hops on level

external memory interface and control.

3This construction yields a fixed-radix express cube, with radix i for each level. It is also possible to construct
mixed-radix express cubes where the radix varies from level to level.
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Figure 4: Hierarchical interchanges (A) a third-level interchange. (B) a third-level interchange

implemented from first-level interchanges. (C,D) With a small performance penalty, ascending
and/or descending interchanges can be eliminated.

| channels for a distance of D. = #/H.. Finally, the message descends back through the levels
routing on each level, j, as long as the remaining distance is greater than i/. For the special case

where /| D, the descending message takes Hy = (i—1)I/2+ 1 hops for a distance of Dy = (i' +1)/2.
This gives a latency of

O ORI PR 2.3 “

Choosing 1 and { so that i/ = a balances node and wire delay for large distances. With this choice,
the delay due to local nodes is (i — 1)iT, = (s — 1)log; aT, which is a minimuin for { = e. While 3
is the closest integer to e, a choice of i = 4 is preferred to facilitate decoding of binary addresses
in interchanges, and networks with ¢+ = 8 or 1 = 16 may be desirable under some circumstances.

In the general case, i’ /D, the latency of a hierarchical express cube is calculated by representing
the source and destination coordinates as A = log; k-aigit radix-i numbers, § = s4_; --- 30, and
D =dy_y---dy. WLOG we assume that S < D. During the ascent phase, a message routes
from § to sp_;---81410---0 taking H, = Zg;}, ((1 ~ s;) mod i) hops for a distance of D, =

;‘:}) (i - 3,) mod i)i?. The cruise phase takes the message H. = ;‘;} (d; - a,-)if" hops for a
distance of D, = H.i'. Finally, the descent phase takes the message from dy_;---d;0---0to D
taking A4 = Z;;t, d; hops for a distance of Dy = Zg;}, d;i’. For short distances the cruise phase
will never be reached. The message will move from ascent to descent as soon as it reaches a node

where all non-zero coordinates agree with D. The total latency for the general case is plotted as
a function of distance in Figure 5.

Figure 4 shows how hierarchical interchanges can be implemented using pin-bounded modules. A
level-j interchange requires j + 1 inputs and outputs if implemented as a single module as shown
for a third level intercaange in Figure 4A. A level-j interchange can be decomposed into 2; — 1
level-one interchanges as shown for j = 2 in Figure 4B. A series of j — 1 ascending interchanges
that route non-local traffic toward higher levels is followed by a top-level interchange and a series
of j — 1 descending interchanges that allow local traffic to descend. With some degradation in
performance, the ascending interchanges can be eliminated as shown in Figure 4C. This change
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Figure 5: Latency as a function of distance for a hierarchical express channel cube with i = 4,
[ =3, a = 64, and a flat express channe] cube with i = 16, a = 64. In a hierarchical express
channel cube latency is logarithmic for short distances and linear for long distances. The crossover

occurs between D = a and D = ialog; a. The flat cube has linear delay dominated by T, for
short distances and by T, for long distances.

requires extra hops in some cases as a message cannot skip levels on its way up to a high-level
express channel. Each message must traverse at least one level j — 1 channel before being switched
to a level-j channel. By restricting messages to also travel on at least one channel at each level

as they descend, the descending interchanges can be eliminated as well leaving only the single
top-level interchange as shown in Figure 4D.

3.4 Performance Comparison

Figure 5 shows how latency varies with distance in hierarchical and flat express cubes and com-
pares these latencies with the latency of a conventional k-ary 1-cube and of a direct wire. These
curves assume that the message source is midway between two interchanges. The latencies are
normalized to units of the wire delay between adjacent nodes. The latency of a conventional k-ary
l-cube is linear with slope a while the latency of a wire is linear with slope 1.
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Figure 6: A multidimensional express cube may be constructed either by (A) inserting inter-

changes into each dimension separately, or (B) interleaving multi-dimensional interchanges into
the array.

For short distances, until the first express channel is reached, a flat (non-hierarchical) express cube
has the same delay as a conventional k-ary n-cube, Tp = aD. Once the message begins traveling
on express channels, latency increases linearly with slope 1+ a/¢. This occurs at distance D = 24
in the figure. There is a periodic variation in delay around this asymptote due to the number of
local channels being traversed, Digeat = (i + 1)/2 4+ ((D = /2 + 1/2) mod i).

The hierarchical express cube has a latency that is logarithmic for short distances and linear for
long distances. The latency of messages traveling a short distance, D < a is node limited and
increases logarithmically with distance, Tp =~ (i—1)log, DT,. This delay is within a factor of i -1
of the best that can be achieved with radix i switches. Long distance messages have a latency
of Tp = (1 + a/i"T,. If i' = a, this long distance latency is approximately twice the latency
of a dedicated manhattan wire. In a hierarchical network, the interchange spacing, ¢, can be
made small, giving good performance for short distances, without compromising the delay of long
distance messages which depends on the ratio a/i. In a flat network with a single parameter, i,
it is not possible to simultaneously optimize performance for both short and long distances.

3.5 Express Channels in Many Dimensions

A multidimensional express cube may be constructed by inserting interchanges into each dimen-
sion separately as shown in Figure 6A. The figure shows part of a two-dimensional express cube
with i = 4, ] = 1. Interchanges have been inserted separately into the X and Y dimensions. A
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Figure 7: Interchanges allow wire density, speed, and signalling levels to be changed at module
boundaries.

similar construction can be realized for higher dimensizas and for hierarchical networks. With this
approach interchange pin-count is minimal as each interchange handles only a single dimension.
Also, the design is easy to package int- modules as the interchanges are located in regular rows

and columns. This approach has the disadvantage that messages must descend to local channels
to switch dimensions.

An alternate con,iruction of a multidimensional express cube is to interleave multidimensional
interchangs into the array as shown in Figure 6B for i = 4,/ = 1. This approach allows messages l
on express channels to change dimensions without descending to a local channel. It is particularly
useful in networks that use adaptive routing [13](14] as it provides alternate paths at each leve] of

the network. The interleaved construction has the disadvantages of requiring a higher interchange
pincount and being more difficult to package into modules.

3.6 Modularity

The interchanges in an express cube can be used to change wire density, speed, and signalling
levels at module boundaries as shown in Figure 7. Large networks are built from many modules
in a physical hierarchy. A typical hierarchy includes integrated circuits, printed circuit boards,
chassis, and cabinets. Available wire density and bandwidth change significantly between levels
of the hierarchy. For example, a typical integrated circuit has a wire density of 250 wires/mm per
layer while a printed circuit board can handle only 2 wires/mm per layer®. Interchanges placed at
module boundaries as shown in Figure 7 can be used to vary the number and width of express and
local channels. These boundary interchanges may also convert internal module signalling levels
and speeds to levels and speeds more appropriate between modules. Using express channels and
boundary interchanges, the network can be adjusted to saturate the available wiring density even

though this density is not uniform across the packaging hierarchy. To make use of the available
bandwidth, computations running on the network must exploit locality.

®This integrated circuit wire density is typical of first-level metal in a 1y CMOS process. The printed circuit
wire density is for a board with 8mil wires and spaces. Both densities assume all area is available for wiring.
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Figure 8: Block diagram of an interchange. Two multiplexors perform switching between input
and output registers based on a comparison of the high address bits in a message header.

4 Interchange Design

Figure 8 shows the block diagram of a unidirectional interchange. A bidirectional interchange
includes an identical circuit in the opposite direction. The basic design is similar to that of a
router (15][6][3]. Two input latches hold arriving flits and two output latches hold departing flits.
If additional buffering is desired, any of these latches may be replaced by a FIFO buffer. If a phit
is a different size than a flit, multiplexing and demultiplexing is required between the flit buffers
and the interchange pins. Associated with each output latch is a multiplexor that selects which
input is routed to the latch. Routing decisions are made by comparing the address information
in the head flit(s) of the message to the local address. If the destination lies within the next i
nodes, the local channel is chosen, otherwise the express channel is chosen. If i is a power of two,
interchanges are aligned, and absolute addresses are used in headers, the comparison can be made
by checking all but the [log, ¢ least significant bits for equality to the local address.

The interchange state includes presence bits for each register, an input state for each input, and
an output state for each output. The presence bits are used for flit-level flow control. A flit is
allowed to advance only if the presence bit of its destination register is clear (no data present), or
if the register is to be emptied in the same cycle. The input state bits hold the destination port
and status (empty, head, advancing, blocked) of the message currently using each input. The
output state consists of a bit to identify whether the output is busy and a second bit to identify
whirh input has been granted the output. The combinational logic to maintain ilese state bits
and control the data path is straightforward.
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5 Conclusion

Express cubes are k-ary n-cubes augmented by express channels that provide a short path for non-
local messages. An express cube retains the wire efficiency of a conventional k-ary n-cube while
providing improved latency and throughput that are limited only by the wire delay and available
wire density. For short distances, a hierarchical express cube has a latency that is within a small
factor of the best that can be achieved with a bounded degree network. For long distances, the
latency can be made arbitrarily close to that of a dedicated manhattar wire, Multiple express
cLaazels z2a be usad to incroase throvghput to the limit of the availabie wire deasily. The express
cube combines the low diameter of multistage interconnection networks with the wire efficiency
and ability to exploit locality of a direct network. The result is a network with latency and
throughput that are within a small factor of the physical limit.

Express channels are added to a k-ary n-cube by periodically inserting interchanges into each
Jimension. No modifications are required to the routers in each processing node; express channels
can be added to most existing k-ary n-cube networks. Interchanges also allow wire density, speed,
and signalling levels to be changed at module boundaries. An express cube can make use of all
available wire density even if the wire density is non-uniform. This is often required as the wire
density and speed may change significantly between levels of packaging.

Express cubes achieve their performance at the cost of adding interchanges, increasing the latency
for some short-distance messages, and increasing the bisection width of the netwerk. Each inter-
change adds a component to the system and increases the latency of local messages that cross an
interchange but do not take the express channel by one node delay, (T + T\, ). Express channels
increase the wire bisection by using available unused wiring capacity. In parts of the network that
are already wire-limited the express and local channels can be combined as shown in Figure 7.

As the performance of interconnection networks approaches the limits of the underlying wiring
media their range of application increases. These networks can go beyond exchanging messages
between the nodes of concurrent computers to serving as a general interconaection media for
digital electronic systems. For distances larger than D' = ailog; @, the delay of a hierarchical
express cube network is within a factor of three of that of a dedicated wire. The network may
provide better performance than the wire because it is able to share its wiring resources among
many paths in the network while a dedicated wire serves only a single source and destination.

For distances smaller than D’, dedicated wiring offers a significant latency advantage at the cost
of eliminating resource sharing.
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Abstract

This paper explores priority arbitration schemes that employ busses to arbitrate
among n modules in a digital system. We focus on distributed mechanisms that
employ m busses, for lgn < m < n, and use asynchronous combinational arbitration
logic. A widely used distributed asynchronous mechanism is the binary arbitration
scheme, which with m = lgn busses arbitrates in ¢ = lg n units of time. We present
a new asynchronous scheme — binomial arbitration — that by using m = lgn + 1
busses reduces the arbitration time to t = %lg n. Extending this result, we present
the generalized binomial arbitration scheme that achieves a bus-time tradeoff of the
form m = O(tnl/') between the number of arbitration busses m and the arbitration
time ¢ (in units of bus-settling delay), for valuesof 1 <t <lIgn andlgn < m < n.
Our schemes are based on a novel analysis of data-dependent delays and generalize
the two known schemes: linear arbitration, which with m = n busses achieves t = 1
time, and binary arbitration, which with m = lg n busses achieves ¢t = Ig n time. Most
importantly, our schemes can be adopted with no changes to existing hardware and
protocols; they merely involve selecting a good set of priority arbitration codewords.

Keywords: arbitration, arbitration priorities, asynchronous arbitration, binary ar-
bitration, binomial arbitration, busses, bus-settling delay, combinational logic, data-
dependent delays, generalized binomial arbitration, linear arbitration, open-collector
busses, priority arbitration, resource tradeoff, wired-OR.
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1 Introduction

In many electronic systems there are situations where several modules wish to use a com-
mon resource simultaneously. Examples include microprocessor systems where a decision is
required concerning which of several interrupts to service first. multiprocessor environments
where several processors wish to use some device concurrently, and data communication
networks with shared media. To resolve conflicts. an arbitration mechanism is required
that grants the resource to one module at a time.

Numerous arbitration mechanisms have been developed. including daisy chains. priority
circuits. polling. token passing, and carrier sense protocols. to name a few (see [3. 6. 10,
14. 13. 19. 22. 26]). In this paper we {ocus on distributed priority arbitration mechanisms.
where contention is resolved using predetermined nicdule priorities and the arbitration
process 1s carried out in a distributed manner at all the system modules. In many modern
systems, and especially in multiprocessor environments and data communication networks.
distributed priority arbitration is the preferred mechanism.

Many distributed arbitration mechanisms employ a collection of arbitration busses to
implement priority arbitration. To this end, each module is assigned a unique arbitration
priority, which is an encoding of its name. An arbitration protocol determines the logic
values that a module applies to the busses, based on the module's arbitration priority
and on logic values on other busses. After some delay. the settled logic values on the
busses uniquely identify the contending module with the highest priority. In particular.
the asynchronous binary arbitration scheme, developed by Taub [23]. gained popularity
and is used in many modern bus systems, such as Futurebus [7, 25], M3-bus [9]. S-100
bus [13. 24]. Multibus-II [14], Fastbus {15}, and Nubus [28]. Other priority arbitration
mechanisms that employ busses are described in [3. 6. 10, 12, 17, 18, 19, 22, 26].

The asynchronous binary arbitration scheme arbitrates among n modules in ¢ = Ign
units of time. using m = lg n open-collector (wired-OR) arbitration busses.! The technol-
ogy of open-collector busses is such that the default logic value on a bus is 0, unless at least
one module applies a 1 to it, in which case it becomes a 1. Open-collector busses, thus. OR
together the logic values applied to them, with some time delay called bus-settling delay.
In asynchronous binary arbitration, each module is assigned a unique (lg n)-bit arbitration
priority. When arbitration begins, competing modules apply their arbitration priorities to
the m = lg n busses, each bit on a separate bus; the resuit being the bitwise OR of their ar-
bitration priorities. As arbitration progresses, each competing module monitors the busses
and disables its drivers according to the following rule: if the module is applying a 0 (that
is. not applying a 1) to a particular bus but detects that the bus is carrying a 1 (applied by
some other module), it ceases to apply all its bits of lower significance. Disabled bits are
re-enabled should the condition cease to hold. The effect of this rule is that the arbitration
proceeds in lg n stages from the most significant bit to the least significant bit. Each stage
consists of resolving another bit of the highest competing binary priority, which leads to a
worst-case arbitration time of ¢ = Ign (in units of bus-settling delay).

! Throughout this paper we count only arbitration busses that are used for encoding the priorities.
Several additional control busses are used by all schemes and are therefore not counted.
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Figure 1: Asvnchronous binary arbitration process with 4 busses. The competing modules are
¢a. ¢5. 3. and cyp. with corresponding arbitration priorities 0010, 0101, 1001. and 1010. Bits in
shaded regions are not applied to the busses. The process takes 4 stages.

For example. consider a system of n = 16 modules that uses m = Ig 16 = 1 arbitration
busses. with the 16 arbitration priorities consisting of all the 4-bit codewords {0000, 0001.
0010. 0011, 0100, 0101. 0110. 0111, 1000, 1001, i010. 1011. 1100, 1101. 1110, 1111},
Figure 1 outlines an asynchronous binary arbitration process among four such modules c;.
¢s. Co. and cg. with corresponding arbitration priorities 0010, 0101, 1001, and 1010. The
arbitration process begins by bitwise ORing the four arbitration priorities. After one unit
of bus-settling delay (stage 1), bus by settles to the value 1, where it will remain for the
duration of the arbitration. By the above rule, each of modules ¢; and ¢ disables its last
three bits. In the meantime. however. each of modules cg and ¢;o disables its last two bits.
because of the 1 on bus b,. At the end of stage 2, bus b, settles to the value 0, where it will
remain for the rest of the process. As a result, modules cg and ¢)o now re-enable their low
order bits (stage 3), which results in bus b; settling to a 1 at the end of stage 3. Finally. in
stage 4. module cg ceases to apply its last bit. because of the 1 it detects on bus b,, which
results in bus by settling to a 0 at the end of stage 4. This arbitration process required
t = lg 16 = 4 stages to complete.

In this paper we show that the asynchronous binary arbitration scheme can in fact
be improved. We introduce the new asynchronous binomial arbitration scheme, that uses
one more arbitration bus in addition to the lgn busses of binary arbitration, but. most
surprisingly, reduces the arbitration time to %lg n. In asynchronous binomial arbitration,
we use (lgn + 1)-bit codewords as arbitration priorities and follow the same arbitration
protocol of asynchronous binary arbitration. Qur binomial arbitration scheme guarantees
fast arbitration by employing certain codewords that exhibit small data-dependent delays
during arbitration processes. For example, by using the following set of 5-bit codewords
{00000, 00001, 00010, 00011, 00100, 00110, 00111, 01000, 01100. 01110, 01111, 10000,
11000, 11100, 11110, 11111} as arbitration priorities, we can arbitrate among 16 modules
using 5 busses in at most 2 stages. Figure 2 outlines an asynchronous binomial arbitration
process among four such modules ¢;, cs, 11, and ¢,7, with corresponding arbitration priori-
ties 00001. 00111, 10000, and 11000 from the above set, that completes in 2 stages. [t turns
out that for any subset of the above 16 codewords, the corresponding arbitration process
takes at most 2 stages. In Section 3, we show how to design a good set of codewords for
general values of n by using binomial codes as arbitration priorities
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Figure 2: Asynchronous binomial arbitration process with 5 busses. The competing modules

are cy. cs. €11. and ¢y, with corresponding arbitration priorities 00001, 00111, 10000. and 11000.
Bits in shaded regions are not applied to the busses. The process takes 2 stages.

The remainder of this paper explores priority arbitration schemes that employ busses to
arbitrate among n modules. In Section 2 we discuss priority arbitration and formally define
the asynchronous model of priority arbitration with busses. Section 3 describes the two
known asvnchronous schemes: linear arbitration and binary arbitration. and presents our
new asynchronous binomial arbitration scheme, which with m = lgn + 1 busses arbitrates
in t = 1lgn units of time. In Section 4 we extend binomial arbitration and present the
generalized binomial arbitration scheme that achieves a spectrum of bus-time tradeoff of
the form m = O(¢n'/t), between the number of arbitration busses m and the arbitration
time ¢. for valuesof 1 <t < lgn and lgn < m < n. The established bus-time tradeoff is of
great practical interest, enabling system designers to achieve a desirable balance between
amount of hardware and speed. We present a variety of extensions to the results of this
paper in Section 3.

2 Asynchronous Priority Arbitration with Busses

In this section we discuss priority arbitration and formally define the asynchronous model
of priority arbitration with busses. The definitions in this section model typical implemen-
tations of asynchronous priority arbitration mechanisms that employ busses.

Arbitration is the process of sele«ting one module from a set of contending modules. 'n
asynchronous priority arbitration with busses, each module is assigned a unique arbitration
priority — an encoding of its name — which is used in determining logic values to apply
to .he busses during arbitration. An arbitration protocol determines the logic values that
a competing module applies to the busses based on the module's arbitration priority and
potentially also on logic values on other busses. The beginning of an arbitration process
is identified by a system-wide signal, usually called REQUEST or ARBITRATE. The
resolution of an arbitration process is the collection of settled logic values on the busses at
the end of the process, which should uniquely identify the competing module having the
highest arbitration priority.




Throughout this paper we use the following notations and assumptions. The set (" =
{coecyv.n cay} denotes the n system modules (chips), which we assume are indexed
in increasing order of priority. The m open-collector (wired-OR) arbitration busses are
denoted by B = {by,.by..... bm_1}. where the busses are indexed in increasing order of
significance (to be elaborated later). The set P = {po.p;..... Pn-1} consists of n distinct
arbitration priorities. with p, being the arbitration priority of module ¢,. Arbitration
priorities are only a convenient mechanism of encoding the modules’ names. and in many
asynchronous schemes arbitration priorities are m-bit vectors that competing modules
apply to the m busses during arbitration. When necessary, we denote the bits of an
arbitration priority p by pl®. p!M. p¥ . in order of increasing significance. We assume
that each module is connected to all busses and can thus read from and potentially write
to any bus. All modules follow the same arbitration protocol in interfacing with the busses
and reaching conclusions concerning the arbitration process. Finally. we assume that only
competing modules apply logic values to the busses: noncompeting modules do not interfere
with the busses. All our assumptions are standard design practice in many systems.

In asynchronous priority arbitration with busses, we restrict the arbitration process
to be purely combinational by requiring that the arbitration logic on all the modules
together with the arbitration busses form an acyclic circuit. Using combinational logic with
asvnchronnus feedback paths may introduce race conditions and metastable states. which
can defer a-bitration indefinitely (see [1. 20, 21]). The acyclic nature of the arbitration
logic imposes a partial order on the busses, which can be extended to a linear order. The
significance of the linear order on the busses is that logic values on higher indexed busses
can be used to determine logic values of lower indexed busses but not vice versa. \We
formalize this idea in the following definition of an acyclic arbitration protocol.

Definition 1 Let P be a set of arbitration priorities. An acyclic arbitration protocol of size
m for Pis a sequence F = (f, _,..... fi. fo) of m functions. f, : P x {0. 13m0 S {0013,
for )y =0.1..... m - 1. :

In asvnchronous priority arbitration with busses, every module has arbitration circuitry
that implements the same acyclic arbitration protocol, but with the module’s arbitration
priority as a parameter. The m arbitration busses are ordered from bn_, down to by.
in accordance with the acyclic nature of the circuit. Informally, function f, takes an
arbitration priority p € P and m — j — 1 bit values on the highest m — j — 1 busses b.,_,
through b,,,, and determines the bit value that a competing module ¢ with arbitration
priority p applies to bus b,, for j = 0.1,....m — 1. An arbitration process among several
contending modules consists of the competing modules applying logic values to the m
busses according to the acyclic arbitration protocol of size m.

Measuring the arbitration time of asynchronous mechanisms is somewhat problematic.
We follow a standard approach taken in many bus systems (see [6. 10, 11, 14. 16, 24, 25])
and measure the arbitration time in units of bus-settling delay. Bus-settling delay. Tyu. is
the time it takes for a bus to settle to a stable logic value, once its drivers have stabilized.
which includes the delays introduced by the logic gates driving the bus. the bus propagation
delay. and any additional time required to resolve transient effects such as the wired-OR
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ghitch. [n effect. we model an open-collector bus as an OR gate with delay Ty the time
it raxes for the output of the gate to stabilize on a valid logic value. once its inputs have
reached their final values. An arbitration process is modeled as a sequence of stages. each
*axing Ihys time, and the arbitration time is defined as the number of stages it takes
intil all busses stabilize. This approach models the situation in manv bus systems rather
accuratelv. 1 More discussion of measuring the arbitration time in units of bus-settling
efay s deterred until Section 3. ‘

We next tormally define the notion of an arbitration process of an acvclic arbitration
protocol on a set of competing arbitration priorities. We characterize the arbitration
process by the collection of the logic values on the m busses at the end of each computation
stage. We use v /(] to denote the logic value on bus b, at the end of the /th computation
stage.for ) = 0.1.....m —lLand { =0.1..... Without loss of generality, we assume that

an arbitration process begins with all busses being in logic value 0.

Definition 2 Let P be a set of arbitration priorities. F be an acvclic arbitration protocol
of size m for P. and @ C P be a set of competing arbitration priorities. The arbitration
process of F on @ is the successive evaluation of

0,10 = 0.
"Ll‘t‘l} = \/ f]<P~l'm—1U]'----L')+1{])~
peQ
tor g =0.1..... m —1and { =0.1..... We say that the arbitration process takes t stages
if ¢ > 0 1s the smallest integer for which v,[t] = v,[t + 1], for j = 0.1.....m — 1. The
resolution of the arbitration process is the sequence of values (v, _([t],... .0 [t} volt "

Definition 2 characterizes an arbitration process as a successive application of the
acvchic arbitration protocol F to the set of competing arbitration priorities @ and the
current state of the m busses. The arbitration process terminates when no more changes
in the state of the busses occur, at which point a resolution is reached. It is relatively easv
to verify that any arbitration process of an acyclic arbitration protocol F of size m takes
at most m stages. This is the case because at each ccmputation stage of an arbitration
process. at least one more bus stabilizes on its final value.

A better upper bound for the number of stages taken by arbitration processes is given
by the depth of the acyclic arbitration protocol. As discussed above, the acyclic nature
of the arbitration logic imposes a partial order on the busses. We can therefore staticallyv
partition the m busses into d levels, such that the computation for a bus in a certain
level only uses the values of busses in previous levels. More formally, given an acvclic
arbitr-tion protocol F of size m, we simultaneously partition the m functions of F into d
nonempty disjoint sets Fo, Fy,.... F4_1, and the m busses of B into d corresponding sets
By.By.....By_y. with f, € Fifand only if b; € By. for0 < j <m-1l,and0 < h < d-1.
The partition must have the property that the computation of a function f, € F, depends
only on the arbitration priorities and on values of busses in sets By, By.....Bx_;. The
depth of an acyclic arbitration protocol F of size m is defined as the smallest d. for which
a partition as above exists. The depth of an acyclic arbitration protocol is never greater
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than its size. The next theorem shows that any acyclic arbitration protocol of depth o
reaches a resolution after at most t = d computation stages.

Theorem 1 Let P be a set of arbitration priorties. F be an acycliz arbitraiion protocc!
of size m for P, and d be the depth of F. Then. for any subset Q C P of competing
arbitration priorities. the arbitration process of F on Q takes at most d stages.

Proof. By iadiction on d. the deptn of the acvclic arbitration protocol F.

Base case: @ = 0. For depth d = 0. there are no arbitration busses and the claim ho!ld-
immediately for arbitrary Q.

Inductive case: d > 0. Given an acvclic arbitration protocol F = [ fm_;..... f1 for of
size m and depth d for P. we can partition F = W$ZLF, and B = Uzl B, as above. Without
loss of generality, we assume that the last level consists of the r functions and busses with
indices 0.1..... r — 1. The first d = 1 levels of F constitute an acvclic arbitration protocot
Fr= {2 P = {fmoy .. fesr. fo) of size m — r and depth d — | for P. By induction. the
arbitration process of F' on @ takes at most d — | stages. That is. forany r < j < m — |
and { > d - 1. we have v,[{] = v,{d — 1}. In addition, according to the acvclic arbitration
protocol F. we also have that foranvy 0 <:<r—-1land k>d >0,

vkl =\ flpovaalk =1 vk = 1))
peQ

= \ fip.vmoa{d=1..... v (d = 1])
PEQ

= i)
because the dth level depends only on busses b,,_; down to b, and because k — 1 > d - |.
This proves that the arbitration process tekes at most d stages. |

Theorem | shows that the number of steges that an arbitration process takes is bounded
bv the depth of the acyclic arbitration protocol F. This bound represents a standard static
approach in the analysis of delays in digital circuits. namely, that of counting the number
of gates on the longest path from the inputs to the outputs. In this paper. however. we
introduce and use a novel dynamic approach of bounding the number of stages that zn
arbitration process takes by a careful analysis of the data-dependent delays experienced
in the arbitration circuits. In doing so, we exhibit arbitration schemes that guarantee
rermination of any arbitration process in a circuit of size and depth m after a fixed number
of stages t. for values of 0 <t < m.

To complete the definition of asynchronous priority arbitration schemes. we need to
introduce the notion of an interpretation function. Suppose we have a set of arbitration
priorities P and an acyclic arbitration protocol F of size m for P. An interpretation
function for P and F is 4 function WIN : {0,1}" — P. such that for any Q@ C P, with
p = () being the highest arbitration priority in @ and (vm_y..... vy, to) being the resolution
of the arbitration process of F on @, we have WIN(Um_y1,....01,t0) = p. Informally.
WIN interprets the resolution of anv arbitration process of F by identifying the highest
rompeting arbitration priority. We are now reacy to define an asynchronous priority
arbicration scheme for n modules. m busses, and ¢ stages.




Definition 3 An asynchronous priority arbitration scheme for n modules, m busses. and
tstages is a triplet Ain.m.t) = {P. F.WIN), where

o P is asetof n arbitration priorities;
o [ isan acyclic arbitration protocol of size m for P:

e WIN 15 an nterpretation function for P and F:
wich that for any @ T P. the arbitration process of F on () takes at most t stages.

Detinition 3 emphasizes the role of the arbitration priorities. which are just a mechanism
tu distinguish between different modules. It will become apparent. however. that careful
design of the codewords used as arbitration priorities has a significant impact on the
arbitvation time. In the next Section. for example, we demonstrate that by using the set

of tlg n + 11-bit hinomial codes as arbitration priorities, we can 2 “hieve an arbitration time
”( f = 1 [g n.

)
-

3 Asynchronous Priority Arbitration Schemes

In this section we first use our framework to describe two commonly used asynchronous
priority arbitration schemes: linear arbitration. which with m = n busses arbitrates in time
t = 1. and binary arbitration. which with m = lgn busses arbitrates in time ¢t = lgn. We

rhen present our new as_nchronous scheme, binomial arbitration, which with m =lgn + 1
busses arbitrates in time ¢t = +lgn.

The Asynchronous Linear Arbitration Scheme

I'his scheme uses m = n busses and arbitrates among n modules in ¢t = | stages. To
arbitrate. contending module ¢, applies a 1 to bus b, for 0 < : < n — .. and does not
interfere with other busses. This translates to module ¢, having an n-bit arbitration priority
p,. such that p”) = 1if i = j and p") = 0 otherwise. After t = 1 units of time, all the
husses stabilize on their final values, and the module with a 1 on the bus with the highest
oriority is recognized as the winner. This scheme can also be implemented with tri-state
Fusses. since at most one module writes to any given bus. The scheme is also known

as decoded arbitration and is used in a number of bus systems and interrupt arbitration
mechanisms (see {10, 12, 18, 26]).

Formally, we define this scheme as LINEAR(n,n,1) = (P. F. WIN). where

e P={p, =0""110": fori=0,1,....n—1}.
o F=/futviiiifisfo). where f(p.vpm 1. . v,) =pVY) forj=0.1.....n = L.

¢ WIN(D* 1 a)=0%10" % =p._4 . for0<k<n—1andanyae{0.1}"7"7"
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Notice that although the size of the acvclic arbitration protocol of LINEAR is m = n,

its depth i1s only d = 1. which according to Theorem 1 shows that the asynchronous linear
arbitration scheme takes at most ¢ = | stages to arbitrate.

The Asynchronous Binary Arbitration Scheme

This scheme uses m = "lgn] busses and arbitrates among n modules in t = Mg nl stages.
The arbitration priority p, of module ¢, is the binary represeniaiion of i. for 0 < ; < n -
To arbitrate. contending module ¢ drives its binary priority p onto the m busses. from
p'" 7! ithe most significant bit of p) onto bus bn_y. down to p'® (the least significant bit
ot pronto bus by: the result being the bitwise OR of the binary priorities of the competing
modules. During arbitration. each competing module ¢ monitors the busses and disables
its drivers according to the following rule: let p') be the Ith bit of the binary priority p.
and let v; be the binary value observed on bus b, for 0 <! < m — 1. Then if p\) = 0 and
r; = 1. module c disables all its bits p! for j < I. Disabled bits are re-enabled should the
condition cease to hold. After t = [lgn] units of time. all the busses stabilize on their final
values. and the module whose arbitration priority appears on the busses is the winner.
This scheme was developed by Taub [23]. and is also known as encoded arbitration Isee
B.o100 14, 240 25)).

Formally. we define this scheme BINARY(n.[lgn] . lgn]) = (P. F.WIN) as follows. For
<implicity of notation we use m = [lgn].

o P={p =¢€,_1 €6y : where €, ;- €€ is the binary representation of :. for
r=0.1.....n~-1}.

o F=if._1.....fi. fo). where

0 it ViZ (P =0Ay=1)

=;+1
p"' otherwise .

e WINia) = a. for any a € {0.1}™.

Notice that the size m and the depth d of the acyclic arbitration protocol of BINARY are
equal. specifically m = d = [lgn]. This can be verified by noticing that the computation
‘or each bus b;, where 0 < j < m — 1, takes into account values on busses b, for j < [ <
m — 1. This implies, according to Theorem 1, that the asynchronous binary arbitration
scheme takes at most t = [lgn] stages to arbitrate. On the other hand. it has been
shown in 72,10, 11, 24, 25, 27] that there are examples where a binary arbitration process
rakes exactly [lgn] stages. These examples consist of arbitrating among bad subsets of
arbitration priorities, where at each stage the binary value of exactly one more bit of
the highest competing binary priority is resolved. Our asynchronous binomial arbitration
scheme. presented next, guarantees fast arbitration by employing certain codewords that
exhibit small data-dependent delays.




The Asynchronous Binomial Arbitration Scheme

This scheme uses m = [lgn + 11 busses to arbitrate among n modules in ¢ = {P%lg n
stages. This sclieme’s acyclic arbitration protocol and interpretation function are identical
v rhiose of the binary arbitration scheme. and thus the same hardware can be used. The
only difference is that binomial codes are used as arbitration priorities rather than all
the 2™ possible mn-bit codewords of binary arbitration. Alternatively. with m busses. this
scheme can arbitrate among 2™~ ! modules in t = H(m - 1)1! stages. We next describe the

binomial coaes and begin by defining the interval-number of a binary codeword.

Definition 4 The interval-number of a binary codeword p is the number of intervals of
consecutive 1's or 0's that it contains. disregarding leading 0's.

Thus. for example. the interval-number of 001011 is 3. the interval-number of 0000 is
. and the interval-number of 10101010 1s 8. In general. an m-bit binary codeword p with
interva,-number r. has the form p = 0™¢1™ Q™2™ ... 8™ where § € {0.1}: mg > O:
m, >0for 1 <j<riand 7 ;m, = m. We next define the binomial codes of length m.

Definition 5 The set of binomial codes of length m. denoted by D(m). is the set of all
the m-bit binary codewords that have interval-number at most H(m - 1)1‘.

The binomial codes of
leading 0's have at most

ngth m are in fact all the m-bit codewords. that. after deleting
{m — 1)1| intervals of consecutive 1's or 0's. For example. the
binomial codes of length 4 is D(4) = {0000. 0001, 0010. 0011, 0100. 0110. 0111. 1000. 1100.
1110. 1111}, consisting of 11 codewords that have interval-number at most 2. As another
example, the binomial codes that were used in the introduction are D(3) = {00000. 00001.
00010.00011.00100.00110.00111.01000.01100,01110,0t111, 10000, 11000, 11100. 11110.
I1111}. consisting of the 16 codewords of length 5 with interval-number at most 2. For
general values of m. Corollary 3 in Section 4 shows that there are at least 2™~! binomial
codes of length m. By taking m = [lgn + 1], this translates to at least 2M8n+11-1 > n
binomial codes. which means that there are enough arbitration priorities for n modules.
Formally, we define this scheme BINOMIAL(n, [lgn + 1], H lg n]) = (P. F.WIN) as fol-

lows. Weusem = [lgn + 1] and ¢t = B lg n] for simplicity of notation.
e P =D(m).
o F={fm_1.....f1.fo), where

0 if va:n)-".ll) (p(” =0Avy = 1) \
pi) otherwise .

f“(p. A PN ’U]*'l) = {

fory =0.1....,m = 1.

m

e WIN(a) = a. for any a € {0,1}
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[t remains to show that the asvnchronous binomial arbitration scheme indeed arbitrates
among n modules in at most ¢ = ng n} stages. Notice that a standard static analysis
of the arbitration circuitry, as given for example in Theorem 1. does not give the desired
result. since both the size and the depth of the acyclic arbitration protocol F of binomial
arbitration are m = d = [lgn + 1]. In Section i. we use a novel dynamic approach of
analyzing the data-dependent delays experienced in arbitration processes. and prove the
correctness of our scheme as a special case of our generalized binomial arbitration scheme.

4 Generalized Binomial Arbitration

[n this section we extend the ideas of the asynchronous binomial arbitration scheme of
Section 3 by presenting the generalized binomial arbitration scheme that with m busses
and in at most ¢ stages. arbitrates among n = ¥ i_, (';‘) modules. By Stirling’s approxi-
mation. the asvmptotic bus-time tradeoff of the generalized binomial arbitration scheme
is approvimately m = 1tn'/t. This bus-time tradeoff is of great practical interest. enabling
svstem designers to achieve a desirable balance between amount of hardware and speed.
The performance of the generalized binomial arbitration scheme is based on an analysis of
data-dependent delays.

We first define the set of generalized binomial codes of length m and diversity r.

Definition 8 The set of generalized binomial codes of length m and diversity r. denoted
by G(m.r). is the set of all m-bit binary codewords that have interval-number at most r.

Generalized binomial codes serve as arbitration priorities in the generalized binomial
arbitration scheme. The next lemma determines the cardinality of the set of the generalized
binomial codes of length m and diversity r.

Lemma 2 The set G(m.r) contains y_ o (T) distinct codewords.

Proof. To simplify the counting, we take all the codewords in G(m,r) and append a 0 at
their beginning. This results in a set of (m + 1)-bit words, that begin with a 0 and have at
most r switching points from a consecutive interval of 0’s to a consecutive inierval of 1's
and vice versa. The number of such words is 3_/_, (';‘) since there are exactly that many

possibilities of choosing at most r switching points out of m possible positions. [ |

Corollary 3 There are at least 2™~! binomial codes of length m.

Proof. By our notation. the set of binomial codes of length m, D(m). is defined by
D(m) = G(m, H(m - 1)]). According to Lemma 2, we have

o= E (7).

(=0
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The sum includes the first H(m - 1)} + 1 binomial coeflicients, which constitute at least
a half of all the m + 1 binomial coefficients. The partial sum is therefore at least a half of
the fuil sum, which is 2™. We therefore conclude that |D(m)| > 3-2m =2l |

The Asynchronous Generalized Binomial Arbitration Scheme

This scheme uses m busses and arbitrates in at most ¢ stages. for t < m. With the m
and t parameters determined. this scheme can arbitrate among at most n = T!_, ("‘)
modules. The acyclic arbitration protocol and the interpretation function of this scheme
are 1dentical to those of the binarv arbitration scheme of Section 3. and thus the same
hardware can be used. The only difference is that generalized binomial codes from Gim. ¢
are used as arbitration priorities.

Formally, we define this scheme GENERALIZED-BINOMIAL(n,m.t) = (P. F.WIN;. for
n=3%i_, (T) as follows.

o P=Glm.t)

¢ F={fm_1.....f1. fo). where

0 it Vsl (B =0Ay =1)
Ul .. U = =i+l
Lip : +1) { pU) otherwise ,

The idea behind generalized binomial arbitration is that the interval-number of the
highest competing arbitration priority bounds the number of arbitration stages. In binary
arbitration, where all the 2™ m-bit codewords are used, arbitration processes can take as
many as m stages, where at each stage one more bit of the highest competing arbitration
priority is resolved. For generalized binomial arbitration, however. we select codewords
that have at most ¢t intervals of consecutive 1's or 0's. The foliowing theorem uses data-
Jependent analysis to argue that any arbitration process takes at most r stages. where r
is the interval-number of the highest competing arbitration priority, by showing that at
each stage the arbitration process resolves at least one more interval of consecutive bits.

Theorem 4 Consider a generalized binomial arbitration process on m busses. Let Q be
the set of competing arbitration priorities, p be the highest arbitration priority in Q. and
r be the interval-number of p. Then after s stages, for any s > r, bus b, carries the logic
ralue p), for0 <j <m - 1.

Proof. We prove the theorem by induction on r for arbitrary values of m. We use the
notation v, (k] to denote the logic value on bus b, at the end of stage k, forj = 0.1,....m~1

and £k =0.1.....
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Base case: r = 0. The codeword p consists of m consecutive 0's, that is, p) = 0 for
) =0.1,.... m — 1. Since p is the highest arbitration priority in Q, then any ¢ € Q must
also have ¢t¥) = 0 for j = 0.1..... m — 1. By our assumption that all the m busses are

initially in logic value 0. and since according to the acyclic arbitration protocol no module
ever applies a 1 to any of these busses, the m busses remain in logic value 0 forever. In
other words. after s stages, for any s > r = 0, we have v,[s] = v,[0] = 0 = p), for
;=010 m — 1. which proves the claim.

Inductive case: r > 0. The codeword p has m bits and interval-number r. and is thus
of the form p = 0mol™ Q™2™ ... 6™ where § € {0,1}: mg 2 0: my >0forl < j <r:
and ©7_,m, = m. We first concentrate on the first r — | intervals of p. and define the
set R of reduced codewords of length m = m — m, = ¥723m,. by ignoring the last m.
bits of the codewords of Q. It is easy to verify that p, the reduced version of p. is the
lighest codeword in R. because we discarded the m, least significant bits of codewords in
Q. Furthermore, the interval-number of p is r — 1, since the last interval of p of the form
&™ was ignored. By applying the claim inductively with rh busses. the set of competing
arbitration priorities R, and the highest arbitration priority p of interval-number r — 1. we
find that after r — | stages the most significant ™ = m — m, busses stabilize to the bits of
p. That is. for any k > r — 1, we have v,[k] = v,[r = 1] = pi) = pU) form, <j<m-1L
We now consider the last m, busses, b, _1,....b,b. There are two cases to consider:

5 =1 The rth interval of p is an interval of m, consecutive 1's, that is, p*) =1 for i =
0.1..... m, — 1. After k stages, for any k > r — 1, the most significant m — m, busses
carry the bits of p, and therefore there is no [ in the range 0 < { < m — 1. with
vi[k] =1 and p'Y = 0. As a result. the module with arbitration priority p applies
all its last m, consecutive 1's. Therefore, for any s > rand: = 0.1..... m, — 1. we
have v,[s] = v;[r] = 1 = p{*), since the busses imnlement a wired-OR in one stage.

& =0 The rth interval of p is an interval of m, consecutive 0’s, that is. p" = 0 for
1 =0.1...., m, —1. Since p is the nighest arbitration priority in @, then for any arbi-
tration priority ¢ € @, ¢ # p, there must exist an / in the range m, <! < m—1, with
p") =1 and ¢ = 0. After k stages, for any k > r — L, the most significant m —m,
busses carry the bits of p, and therefore any module with arbitration priority q # p
disables at least its last m, bits. As a result, forany s > rand:=0.1,....m, - 1.
we have v;[s] = v[r] = 0 = p¥), because the busses implement a wired-OR in one
stage and no module applies a 1 to busses by through bm,_1 anymore.

Thus. after s stages, for s > r, the m busses carry the corresponding bits of p. n

The following corollary shows that by taking G(m,t), the generalized binomial codes
of length m and diversity t, as arbitration priorities, we guarantee that any arbitration
process completes in at most t stages.

Corollary 5 Consider GENERALIZED-BINOMIAL(n,m,t), the generalized binomial arbi-
tration scheme. For any subset of arbitration priorities Q C G(m,t), the corresponding
arbitration process takes at most t stages.
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Proof. Let p be the highest arbitration priority in Q. Since the interval-number of p is
at most t, Theorem 4 guarantees that the arbitration process on @, with p as the highest
arbitration priority, takes no more than ¢ stages. [ ]

The Generalized Binomial Arbitration Tradeoff

The generalized binomial arbitration scheme achieves a bus-time tradeoff of the form n =
Yo ('7) which by Stirling's formula exhibits asymptotic behavior m = %tn‘/t. Figure 3
presents this bus-time tradeoff for a system consisting of n = 64 modules. The number of
busses varies from Ign = 6 to n = 64. and the arbitration time is in the range 1 to Ilgn = 6
stages. Generalized binomial arbitration reduces to binary arbitration with m = lgnl =6
busses. to binomial arbitration with m = [lgn + 1] = 7 busses, and to a modified version
of linear arbitration (see Section 3) with m = n = 64 busses.

t Bin
/Arbnrl(n
5<h -
54
R4
31} s e 90
J Maoditied
2' ® 8 0.6 5 0 05 9 00 0 0 0 0 SO O B OO OGNS O LSO NN L OOt e o Ar::‘nr..:(nn
Binomia
Arbitration
14 ..
—— bbbt e AU U U U S S U G G U W W S U0 S S A G SV I S W S T T O T U S T

leB101211161820ﬂ;2‘2l303236“1“042“““50525‘5658606264 m

Figure 3: Bus-time tradeoff of the generalized binomial arbitration scheme for n = 64 modules.
using 6 < m < 64 busses and 1 <t < 6 stages.

Figure 3 demonstrates that neither linear arbitration nor binary arbitration efficiently
utilize the resources. For example, increasing the number of busses used in binary arbitra-
‘ion by one, results in speeding up the arbitration process by a factor of 2, as exhibited
by our binomial arbitration scheme. On the other hand, allowing another time unit over
linear arbitration enables reducing the number of busses from n to approximately V2n.

Notice, however, that in order to achieve another factor-of-2 improvement in the arbi-
tration time, adding another constant number of busses to the Ign busses is not enough.
Asymptotically, as n grows without bound, we need to use more than (1 + ¢)lgn busses.
for ¢ > 0.232, in order for the sum ¥, (T), with ¢t = llgn, to be at least n. This
can be verified by Stirling’s formula, since when m is greater than Ign but smaller than
1.2321gn, and when t = ;‘l-lgn < m/4, the sum of the first m/4 binomial coefficients (",‘)
for 0 < | < m/4, does not exceed n. This demonstrates that our binomial arbitration
scheme, which uses Ign + 1 busses, exhibits a most economic balance, much more so than
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the binary arbitration scheme. Other authors [11] have also discovered that by excluding
certain codewords, the arbitration time of binary arbitration can be reduced. We, however.
give the first general scheme that provides a full spectrum of bus-time tradeoff.

5 Extensions

This section contains some discussion. additional results, and directions of research con-
cerning priority arbitration with busses.

Bus Propagation Delay, Settling Time, and Wired-OR Glitch

High-speed busses are commonly modeled as electrical transmission lines. where it (akes
some finite amount of time for a signal to propagate through the bus and bring the bus to
a stable logic value. [n addition. there are the response time of logic gates and the effect of
the wired-OR glitch that need to be considered. In particular. the effect of the wired-OR
clitch on bus-settling time and the use of special integration logic at module receivers iv
reduce this effect (see [3. 8. 16. 25]). seem to support our model.

Some authors carry out a more elaborate analysis of high speed busses (see (2. 3.
23. 24, 25]). which takes into account the distances between modules on the bus and
imposes certain assumptions on the arbitration priorities. In [24. 25]. for example. Taub
assumes geographical ordering of module priorities and equal distances tetween modules
on a backplane bus. Counterexamples to Taub’s analysis, where these requirements are
not met. have been found [2, 27]. Our model, on the other hand. is applicable to a wider
classes of svstems. such as data communication broadcast channels and bus systems were
priorities and module locations are not predetermined and fixed.

The Asynchronous k-ary Arbitration Scheme

The linear arbitration and binary arbitration schemes of Section 3 use n-ary and binary
representations, respectively, of module priorities. We can also use radix-k representation
of module priorities, for other values of k, to arbitrate among n = k* modules in t units
of time. using m = tk busses. We sketch the asynchronous k-ary arbitration scheme here
due to its simplicity and because it generalizes the linear and binary arbitration schemes
rather straightforwardly. This scheme exhibits a bus-time tradeoff of the form m = tnt/t,
which is a factor of e worse than our generalized binomial arbitration scheme.

Asynchronous k-ary arbitration, for 2 < k < n, can be described as follows. Each
module is assigned a unique k-ary arbitration priority consisting of ¢ radix-k digits. We
divide the m = tk busses into t disjoint groups, each consisting of k busses. During
arbitration. competing module ¢ applies the ¢ radix-k digits of its arbitration priority p to
the t groups of busses, using linear encoding of its digits on each group of k busses. As
arbitration progresses, competing module ¢ monitors the t groups of busses and disables
its drivers according to the following rule: let p!") be the ith radix-k digit of p and d; be the
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highest index of a bus in the /th group of busses that carries a 1. Then if p!Y) < 4,, module
c disables all its digits p'Y) for j < {. Disabled digits are re-enabled should the condition
cease to hold. Arbitration proceeds in ¢ stages. each of which consists of resolving the
value of another radix-k digit of the highest competing k-aryv arbitration priority.

Modified Linear Arbitration

A modified version of linear arbitration. which uses the same acyclic arbitration protocol of
binary arbitration. achieves the same bus-time tradeoff as linear arbitration. This version
is the generalized binomial arbitration scheme with m = n busses and ¢t = 1 time. where the
arbitration priority of module ¢; is p; = 0"~*=' 1I'*! for: =0.1..... n—1. This observation
poses an interesting question regarding the universality of the acyclic arbitration protocol
of binary arbitration.

Lower Bound for Asynchronous Priority Arbitration

The asvnchronous §eneralized binomial arbitration scheme achieves a bus-time tradeoff of
the formn = ¥|_, G‘) where n is the number of modules. m is the number of busses. and
t1s the arbitration time. We conjecture that this tradeoff is optimal for our asynchronous
priority arbitration model, in that no more than n = ¥|_, (T) modules that can be
arbitrated with m busses in at most ¢ stages.

Synchronous Priority Arbitration Schemes

[n this paper we discussed the asynchronous model of priority arbitration with busses and
presented several asynchronous schemes. Considering synchronous priority arbitration
scheme that use clocked arbitration logic, we can show that a synchronous version of k-ary
arbitration achieves a bus-time tradeoff of the form m = n!/* and that this tradeoff is
optimal in a related synchronous model of arbitration. We can also demonstrate how to
combine asynchronous combinational schemes with synchronous clocked schemes to achieve
a wide spectrum of bus-time tradeoft.

Resource Tradeoffs

Resource tradeoffs of the form m = ©(tn'/*), based on multiway trees and the special class
of binomial trees, are discussed in [4] for a variety of problems such as parallel sorting
algorithms. searching algorithms, and VLSI layouts. Asynchronous priority arbitration
with busses can in fact be considered as a selection process on trees. Asynchronous k-ary
arbitration corresponds to a selection process on regular trees of branching factor k. while
asynchronous generalized binomial arbitration corresponds to a selection process on the
more economical “modified binomial trees” of [4].
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Technologies for Low Latency Interconnection Switches

Thomas F. Knight, Jr.
M.LT. Artificial Intelligence Laboratory

Abstract

This paper presents an engineering design for a low latency high bandwidth interconnec-
uon network which wul form the switching substrate for a multi-model paralle! process-
ing system. The performance is enhanced with a variety of approaches covenng inter-
connection protocols, routing, fault tolerance, advanced packaging, and electrical inter-
connecuen techniques. The synergisuc application of these technologies leads to a high

performance design.

Motivation

A key performance factor in large scale parallel computer
systems is the latency in processor communications.
‘Dertouzos 98] considers a program with available parallelism
p. running on a multuprocessor of size a, with a communi-
cauons latency /, measured in terms of instruction execu-
uon umes. He establishes that there is a speedup linear in
n uf nl << p, but that this speedup approaches an asymp-
totuc bound of pil when nl >> p.

Our parallel programming model and algorithm design can
influence the available parallelism, or the average length of
independenty scheduled instruction sequences{l], but the
latency of the communication network remains one of the
fundamental characteristics of the hardware architecture.

In message passing models, the interprocessor communica-
uon latency appears as a delay in receiving messages from

{11 In the presence of code blocks of length ¢ which can be exe-
cuted independently without interprocessor communication,
Dertouzos shows that the relationship is modified by substi-
riting pq for the available parallelism p, making the speedup
less dependent on the latency.

U

remote processors [Dally 8%;. In shared memory systems
[Bunerfly 87 Pfister 85), the latency of the communication net-
work affects the average memory reference time. Even the
addidon of shared memory caches (SCT. Agarwal 98 3isian; 38
o large scale parallel shared memory systems simpiv
moves this latency from occurring once every memory

cycle to once every cache miss time. Even in SIMD archi-

tectures such as the connection machine [Hiltis 351, the long

latency for communications is a significant bottleneck. re-

sulting in programmers avoiding its use when possible.

Several recent architectures supporting particular program-
ming styles drastically lower the latency of communica-
dgons to achieve higher performance. The Ametek hyper-
cube architecture{Amewek 36}, for example, achieves micro-
second latencies for interprocessor communicadon as com-
pared to the hundreds of microseconds for first generaton
hypercube processors such as the original Caltech de-
sign(Seitz 851 Similarly, the Masspar architecture dramati-
cally reduces the latency for large scale SIMD communica-
gons [Grondalski 87 compared to the connection machine.

Alewife

At MIT, Anant Agarwal and ! are designing an architecture
called Alewife which has as an explicit goal the support of
a wide variety of parallel programming models. As such, it
provides hardware support for a variety of programming
styles, including several types of shared memory, message
passing, and data level parallelism. To achieve this broad




Ang? O MOder SUPPCT Uiy AN 2uTemely 10w lateney
communicatons mechanism. We are using this detaled
lesim as a test-bed for the hroader problem of Jesigrunyg
2xgemesy large. scalable parailel machines ah.ch are
Tex.hie notheir programming st ie

The Algaiz lesgn onsists of three major lomperents
The Orst emporeni o3 simple processor charactenzed by
1St olontext swilching, fast message dispatching, and
support for daw tvping. The second is a cache and
‘alerproaessor  communucauens  controller  capabie  of
supporung :oherent memory access tn the absence of a
angle sharad bus.  Finally, the design relies on a fast,

nsentoommenicateon netacrk. called Transit

The moddlanty of this design provides an opponunity o
meue poruens of the machine as a substrate {or other
architecaures. Inoparucular, we are carefully definung the
nterface herazen each of the components of the
architecure o aifow one poruon to be replaced hy different
or higher performance equivalents.  Transit supports a
carefully defined interface w the cache conmoller, and the
cache onuailer presents beth a uniform shared memory
model and an explcit processor (0 processor communica-
uon modei o the processors.

Transit Target Specifications

The Transit network prowvides uniform communicatons
between 256 processor'memory clusters. Latency for a
remote memory reference s 280 nanoseconds, and peak
bandwidth 1s 100 megabytes;second/port.  The remainder
of this paper concems the technology with which this
network 1s consiructed, and the impact these techniques
have on lowenng the latency of communicauons. We will
brefly consider more advanced interconnection techniques
and address the issue of scaling the design to larger
numbers of processors. Because of space limitadons, most
of the discussion will consist of a description of the
techniques Transit uses to achieve high performance, with
lide discussion of alternative possible designs. In many
cases viable alternatives exist, but the space of possible
designs is so large that it is impractical in a short paper o
discuss alternatives for every decision.

Communication Protocols

Transit uses a connection based source-responsible routing
protocol. The sending controller transmits a routing header
and opuonal data forward into the Transit network, while
retaining a copy of the message. The network makes a best
effort to establish a communication link between the source
and desunaton port. After wansmitting the forward

message, the communicators fath ah.n mu ter
estabiished s electnedlly reversed, an wkr w2007 000
and opunnal daga flows from the redipient o he e o0

for any reason. the atempred cormmuniaiens Tl ran
15 the respons.biity Lt the sender o ret, the Jornel ”

The abiiy of the sender w rew faied communis .
leads 1o imporuant simpidficatons in the routng 2.emen;

used 1n the communicauon swilch, sings &2 need oo

buffer or flow conuol the messages bewny »ent 0
element. [nstead, the element, if 1t congesied. i3 fr22 <0
discard awkwardly umed messages. Simudarly, fajures -
rouung clements or the wiring beraee: them ain Se
handled by simply Jdewcung the failed cormi- o -

atempt using checksuming echmuques. and 2.icis oy
damaged Jata. The towl failure of rounng 2ierers
wnterconniect s handled by redundant. rande. ool rrll- s

descnbed below. Explicit acknow!edgment might seer
slow the network, but 15 required eventually 2vern -
networks whuch accept responsibihiny for Jeliverg
messages. Here, the reply data from a memany raquest. U or
exampie, can be combined with the ackr . edgment.

Each port of the Transit network zonsiss af 3 nine hig w22
path, synchronously clocked every 10 nanoseconds  One
bit is a framing bit, used to disunguish control bytes frem
data bytes, and the remaining eight bus are used to transmt
one byte of routing informauon, or data. Figure | sheas
the details of the wnter-chip uming of a simple Tansfor

In the idle state, the sender ransmits a zero framing
each clock cycle. At the start of a message. ane buie o7
routing data and 2 framing bit of one are sert.nto the rput
part. Each clock cvele thereafter a data byte s trarsm o2
nto the input port.  This forward smeam of byvtes s
pipelined through each stage of the inwerconnect.r
network, and eventually reaches the desunaiion.

When all of the sender dam has been transmitted, a
distinguished byte, the wrn byte, (all one’s with 3 zero
framuing bit) 1s ransmited. This is a signal to reverse the
data flow in the network. On receipt of the tum byte, 2ach
stage of the network suarts pipelining data back to the
onginal sender. When the turn byte reaches the
desunaton, a complete reverse path has been set up
allowing data to flow from destination to the sender The
destination transmits an acknowledgment, followed by any
number of data bytes. The framing bit in the reverse
direction is used to signal the completion of data transfer

Status information is available to the sender as a side effect
of this sequence. Because of pipelining, a D stage switch
has 2D clock periods of delay following the senders
transmission of the tum byte and prior 10 the arrival of the
acknowledgment. Dunng this penod, each stage of the
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interconnection switch transmits a pair of status bytes back
1 :he sender, indicanng which (if any) of the output ports
were assigned to the connection leaving this switch stage,
and a checksum for the message at this stage of the switch.
The suatus information is used by the sender o determine
the exact path through the switch this message was routed
with, to determine where a message was garbled in transit,
and to determine at which swiikch stage a message was
discarded, if it was thrown away.

Interconnection Topology

The Transit network consists of a four stage, radix four
omega network, providing 256 possible destinations. Each
routing clement s an eight input port, eight output port
swilching component. The eight input ports are

interchangeable, and the eight output ports are paired in
four groups of two ports ¢ach. An input message is routed
o one of the two available output ports in the direction
specified by two bits of the routing byte. Once this routing
is performed, the path which is set up will remain assigned
until the connection is dropped. If neither of the two
output ports in the desired output directon is available, the
message is discarded.

The wiring of the port from each stage of the switch to the
next is arranged so that the data wires are rotated by two
bits. This permutation of the data wires allows the two bit
field of the routing byte seen by each of the four stages of
the switch to differ, routing the message on ali eight buts.

The pairing up of output ports in the routing element




provides an mporant fault tolerance feature of the Jesign
{f beth autput ports in a2 given direcuon are available ahen
1 message s 0 be routed, a pseudo-randem tumber
generatar s used o arbhiraniy chose betaeen diem This
1$5ures hat the path wken through the switch on an attempt
W0 reTy Tarsmatung 1 message After falure will with high
probatuity, aks 2 different path than the first oy, This
nath redundarcy ailows fault wlerance to be built 1nto the
network at very ow overhead.  ldeally, the two output
ports +hich 2o 1n iogically wdenucal direcuons should be
wired t0 physically dissnct routing elements to provide
~etter fault coverage. This s possible in all but the final
stage of the swuch, where all messages desuned for a
rarucuiar processor must flow  through one routing
element. The necessity to wure this final stage differently
i3 0 contlict wath the desire 10 wire all stages with the
same permutauon, for reasens which we descnibe below n
the secuon Hn packazing

The chowe of four pairs of output pors as a rouung
2lement Zesign aso has important umplicauons for the
stausacal success of the routing process.  This issue 1S
discuswed in dewul in the secuon below on perfermance.

Packaging Issues

The packagng of high performance systems has an
extreme impact on their speed -- to the extent that system
level design is often dictated by available packaging
technology.  The Transit network 1s packaged using a
anique threz-dimensicnal winng technology which allows
roughly equivalent wiring density tn all three dimensions.
The approach consists of using convenaonal printed circuit
boards, with a S0 ohm controlled impedance stripline
structure, for two of the three dimensions. For the third
dimension of winng, these boards are layered on tog of one
another, as shown in figure 2.

Contact between the boards 1s provided with button boards
‘Smolley $5), a term descnbing compliant fine wire fuzz
buttons pushed into blank, dnlled printed circuit board
matenal /figure 3). These buttons, formed by compressing
25 micron wure into a cylindrical die 20 mils in diameter by
40 muls high, are used on staggered, S0 mil ceniers, 0
provide extremely dense connectors between layers of the
packaging. Because of the short distances involved,
impedance mismatch is minimal if care is taken with
ground wire dernisity.

Components are packaged wnto this structure by mounting
them on carners also fabricated from standard PC board
materals. A recessed cavity is used w hold the die, which
1s then wire bonded or tab interconnected to the carrier.
The carmer s unlike normal integrated circuit packages in
that its pins are simply flat pads located on both the top and

Figure 2

bottom of the carmer board. Thus termunals of the die are
accessible from top or below, and wures, if necessary, can
be simply routed through the carmer with no connecaen @0
the die. The carrier board provides a controiled impedange
envuonment for signals up unul the bond to the die In
addinon, the camer provides low inductance power and
ground plane decoupling capacitance through integrai laver
proximity, as well as locatons for mounung e2xplic:t
ceramic bypass capacitors. Through holes are provided .n
the carner for verucal fluid cocling channels.

Component carriers, together with upper and lower button

SI!N 02

Figure 3
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soard cornectors. are placsd nwe a hoiding frame ahich
provides (wo dimensicas of horzonwl alignment.  The
hoiding frame, with its button boards and carriers, forms a
aver in the suack. Stack-wde printed cucuit boards
wvpicaliy altemate wath layers of holding frames and chups,
oroviding 3 compact, dense, three dimensional means for
~udding r2lanvely small F30x30x 20 cmo three dimensional
stucturas

The logical structure of the four stage radix four omega
network 15 mapped onto the three-dimensional package by
packag:ng each stage of the routing network n a separate
\aver of the stack. Signai flow through the network is thus
ogicaily in the verucal direcuon, from one layer o the
1ext. The omega topology has the valuable property of
having idenucal wuning pattems between stages of the
aevaork: this property 1s exploited in the stack by
repiicating the nterconnecton stucture of each stage
mulupie ames. Ideally, then, the stack consists of a
structurs altermaang a fixed omega winng permutation of
signdis in the honzontal Jdirecuon, with lavers of routng
zlemenis. Four such winng routing element pairs complete
the three Jdimensional stack. Figure 4 shows the wiring
pattern for the horizonwal wires in one of the lavers of the
stack. Each line represents a pair of ports: this figure
shows a the wiring for a A4 port network.

The verucal signal flow means that inputs to the switch
structure are available at the top, and that outputs are
available at the bottom. Because we wish to use this
network as a Processor to processor communication switch,
the inputs and outputs must be avalable in physical
proxumy. This 1s solved by routung the network outputs
back through the stack vertically on addibonal wining
channels. These channels take up little space, since there is
no horuzontal winng associated with them.

Providing electnical power 1o the cucuits and removi-g
waste heat reman significant issues. The fusz Sutwas s
excellent, low resistance :onneciors, and. because { the
large number required berazen boards lor .mpelari:
conuol, exist in sbundance W provide 1 low nduclit
path verucally beraeen boards Honzonally, pewer 3
provided using ntegral power ground plane stuciurss
within the conrolied impedarce boards  These planes also.
provide important iow Inductance power suppiy fitering.
Power is brought into the stack with powzr lugs mounted
on boards at the center {verucally) of the stack «hich
extend horizontally bevond the normat houndarm of the
stack.

Heat s removed from the swck using FC-77 Flucrnen
iquid flowing verucally through the suck. The znure
stack s normally run immersed i Fluenner, ard
pressunized fluid 1s pumped nto a distibution man-id &
the top of the stack. This manifeld also acts as ane of the
pressure plates which apply compressive force to mate the
large number of bution board contacis.  The high heat
capacity per unit volume of tgquid cociing relatve w0 air
cooling dictated 1ts use in the high density struciure
Modest flow rates (2 gal/mun’ shou!ld he adequate w0 cool
our prototype system.

As a result of the aggressive packaging used in this design,
the longest wires are approximately 45 cenumeters.
Modest cost, easily fabricated. low dielectric conswar: PC
board materials such as Norplex cyanate esters, have 2
dielectnc constant of 3.1.  The wire delay of the longest
paths in the design 1s thus approximately 263
nanoseconds.

This composite structure has many advantages over
conventional packages. First, since it is three dimensicnal,
the wire length for a given wiring density is substantially
smaller than structures otherwise achievable using (wo
dimensional packaging, backplanes, and cables. Second, 1t
8 easily repairaple by disassembly of the stack, since it
involves no soldering or other permanent connecuons.
Third, though it might seem awkward to debug, simple
baards can be constructed which, when added 0 the stack
between particular layers, allow signals in that laver o be
examined.

Electrical Issues

An carly decision was to totally abandon the dea of using
multi-drop bus like electncal structures in the design. The
drastic reduction in signal speed and line impedance due to
capacitive loading of the tansmission lines in even
carefully engineered systems argued strongly that point 1o
point communications be used.




A dominant elecmcal desizn ssue was how to dnve the
very large number 23.000) of terminated signal wures i
the switch. A S0 ohm unpelance level 15 dictated by
oracucal were Zeometnes, and could net in any case, be
raked by mere than a factor of two. With sandard ©MOS
gl <wongs of five volts, the parallel termunation of a
single e would dissipate a half waa! We reduce this
powsr dissipaton By a factor of SO by lowenng the signal
swing to one volt, and by series (erminaung the
tansmussien lines.  The senes termination allows the
impedance seen by the ourput dnver o be twice the
impedance of the bne, but 1s applicable only to point-to-
DOINL winng

The senes termiraucn resistance 1S provided within the
puilup and pulldown mansiswors of the output driver, as
Jescribed 1N (Kaugni 88). Our current design differs a litde
‘rom the technique Jescnibed n that paper in that it uses a
Jigrally controlled D/a like structure to vary the output
ransistoe resistance  The use of resistive pullup and
pulldown devices has important speed implicabons, since
the devices need not ‘must not: be large devices, and hence
can be dnven far more quickly than conventonal low
impedance  output driver transistors. Providing the
termunatng resistors on-chip alsn has the large advantage
of eliminatng 23.000 discrete resistors from the stack, and
allows for elecmcal compensation of both the driver
impedance and the line impedance against manufacmunng
varauon,

The one ~olt logic swing of the output driver is compatible,
in magniude. with the approximately one volt swing of
zCL logc famulies. As a result. the use of small quanaties
of small scale ECL logic for applications such as clock
buffers and /O interfacing is practical, using a pair of
offset power supplies for the ECL cucuitry.

One of the difficulties #e have encountered is the very low
efficiency of one ~olt power supplies. At these voltages,
the voltags drop of a silicon diode (.7 volis) becomes a
major source of power supply inefficiency. Synchronously
switched MOS power devices used as rectifiers will solve
tus problem, but there is as yet no commercial demand for
tus development. As VLSI devices scale to smaller
dimensions, the need for high efficiency, low voltage
power supplies will become very evident.

We are currently investigating two techniques for clock
distnbution. The conventional approach is w0 use multi-
stage clock fanout with equal length and matched delay
transmission lines to each network element for delivery of
a ume aligned clock signal. A second approach of treating
the clock signal as a single node, wired in a highly
interconnected three-dimensional grid may offer some

-

advantage The gnd must be dnven at muiupie locatar:

capaciuve load. Since the clock waveform s of 3 single
frequency, we can consider the possibility of rescraz-g

distnbution power

Performance

One of the advantges of the unbuffered suvle of
communicaton network s 2ase of performance anaivsis.
Since the network dgming is determined 2nurely hy the
pipeline delay, the latency for successful messagas «s 2asy
to calculate. Since the system 1s memen less 2xcepy at the
sender, the probability of rouung success within the
network can be calculated quite 2asily, using the analvu:
techniques described in [Kaght 39].

A typical message might consist of 2 remote memor. s2ad
access. Such a request would send an address foraard
through the Transit network, cycle the remote memon . and
retum an acknowledgment and the read data. For 22 b
address and data, the forward message s five byies iong,
and the reverse message is five bytes long. A two by
checksum will ukely be added w these message lengths.
although these are indisunguishable from data to the
network. The pipeline delay of the network is four clocks,
so the remote access 1S complete in 7+3+7+4 = 22 cycles.
By making optimistic assumptions about the success of
checksuming the data, we can overlap a poruon of the
forward message delivery with the cycling of the remcie
memory system. As soon as two bytes of address are
received, we can initiate a RAS cycle on the remate memen
system, and start the memory cycle in parallel with receipt
of the remainder of the address. Similarly, the
acknowledgment byte may be sent prior to having access
the read data. This gives 60 nanoseconds at the remote
processor/memory pair to perform a memory RAS,CAS
cycle and obtain the data.

The probability of successfully routing through the Transit
network as a function of input loading is shown in figures §
and 6. The input loading is the probability that an :nput
port has a message being sent or received. The best that
can be achieved without combining approaches is the non-
blocking behavior of the crossbar. Figure S shows the
performance of a crossbar network with one output port to
each logical destination. For companison, the eight stage
omega network constructed out of 2 by 2 switch elements,
and the four stage omega network constructed out of 4 x 4
swikch elements are also shown. The Transit network,
further limited to a single output port per logical
destination is shown on this same graph. The extra output
ports between switching elements leads to behavior very
close to the ideal behavior of the crossbar.
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Similariv, o figure A, we show the tdeal behavior of a large
son-hlocking N ox 2N crossbar which allows two output
pors per ogical desanaucn.  Below it we show the
pericrmance of the Transit network, again demonstrating
periormance close to the behavior of a crossbar.

The reasen for thus good performance lies in the choice of
network zlement -- particuiarly in the avalability of
muinple output paths wavelling in a single logical
directinn The performance of the network from a
probabdisuc standpoint could be umproved yet more by
constructng a switching element with eight inputs and two
clusters of four outputs each, where cach of the four ports
i a cluster mavelled n a logically equivalent directon.
The disadvantage of this approach is the doubling of the
~znber of stages in the network, since only one bit worth
of rouung :s performed per stage of the network. The
choice of the element for Transit was dictated by a desire
t0 minimize the pipeline delay of the network while
maintarning good probabulistic performance.

Technology Extrapolation and Limits

The approach of comstructing large multi-stage omega
netsorks becomes infeasible at a point not much larger
than the network we are constructing, due 0 the
exponential growth of wiring. For processor networks
larger than can be packaged with short wiring, the architect
rand ulumately the programmer) must face the importance
of locality in constructung very large parallel machines.
Perhaps the most elegant approach to acknowledging the
necessity for this locality is the fat-ree (Leuenon 35] ap-
proach. A fat-tree can be thought of as a multi-stage
omega network where local transactions are successively
isolated from more global wansactions. The more global
transactions are routed, through successively more narrow
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channels, towards a global switching arrav. Finallv, they
arrive at the most global (root) node of the network, and,
from there, may be delivered to any locaton. The
narrowirg of the channels as the root is approached allows
this network 0 scale w very large arrays, at the cost of
latency, and of limtted ability to communicate globaily.

We can construct fat-tree based routing networks from the
stack structure described above for Transit by adding one
additonal routing stage per stack. The purpose of this
routing stage i to isolate messages destined for more
global stages of the switch from those that mav be
delivered locally. The more global messages are routed to
the bottom of the stack, where they connect to a set of
flexible printed circuit board layers used as cabling
between stacks. The other end of these flexible PC board
cables is routed to the top of another stack, along with the
global signals from three additonal stacks. Outputs of the
global stack similarly are channeled back w0 the local
stacks. This approach of constructing a fat-wee like
structure from a tree of high performance routing stacks
appears to be an effective way of building networks which
combine high performance, an ability to take advantage of
locality, and scalabiity to tens of thousands of high
performance processors.

Two alternative electrical techniques for communicating
between routing ¢lements appear t0 be important
alternatives. Ome is the approach of Rettberg, Glasser and
Basset [Renberg 87] for eliminating the reliance on low clock
skew in the signal paths. Future versions of the Transit
network will likely require an approach similar to this,
especially if the wiring between stacks is long enough to
impose delays large compared to the anticipated clock rate.

Another approach which we are devotng some attention to




1s the nogon of mansmutung 1ata hetaesn chips by use of
modulated microwave camers.  The advanwge of this
scheme s the eliminanon of the DC component of the
digial signal, oansforming a broacband digial signal o
3 narrowband RF signal. For the same reasons that
modems are an appropnate technique for oansmutung data
on ong disiance telephone lines, the use of narrowband
dana ransmission allows many electical tricks which are
otherwise not avatlable.  Transformers, power splitters,
imaters, stub tuning of Zansai.sion unes, and automatc
Zun conuols can all be used to good advantage in
communicating these signals. The high dispersion of
ransmission lines associated with the series resistance of
the line s a much smaller problem when the range of
frequencies 1s less than an octave. Finally, and perhaps
most compelling, the connection of signals from one
physical structure to another need not be done with wires,
but may b¢ Jdone with the intnnsic capacitance of adjacent
meti conacss. A chip, for example, might not need bond
wires for the signals, but only for power and ground
dismbuton.

Summary

We have presented an .nitial engineering design for a high
performance processor to processor interconnection switch
intended as the substate for a programming model
independent computer architecture. Some of the key
elements of this approach have already been tested in
prototype form, and we are actively pursuing a complete
prototype.
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